The electronic atlas of bifurcation diagrams of the Kowalevski–Yehia gyrostat
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 147-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The integrable case of Kowalevski–Yehia in the dynamics of a gyrostat is considered. We present a new approach to classifying the bifurcation diagrams of reduced systems. We find efficiently checked existence conditions for the critical motions on the area integral constant sections of the surfaces bearing the 3-diagram of the complete system. The cases where these conditions qualitatively change give the analytical expressions of the dependencies between the area constant and the gyrostatic momentum forming the classifying set for the two-parametric family of the reduced systems' diagrams. Finally, we present a computer system, which satisfies the given definition of the electronic atlas.
Keywords: integrable Hamiltonian system, bifurcation diagram, electronic atlas.
@article{VUU_2011_2_a10,
     author = {I. I. Kharlamova and P. E. Ryabov},
     title = {The electronic atlas of bifurcation diagrams of the {Kowalevski{\textendash}Yehia} gyrostat},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {147--162},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a10/}
}
TY  - JOUR
AU  - I. I. Kharlamova
AU  - P. E. Ryabov
TI  - The electronic atlas of bifurcation diagrams of the Kowalevski–Yehia gyrostat
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 147
EP  - 162
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_2_a10/
LA  - ru
ID  - VUU_2011_2_a10
ER  - 
%0 Journal Article
%A I. I. Kharlamova
%A P. E. Ryabov
%T The electronic atlas of bifurcation diagrams of the Kowalevski–Yehia gyrostat
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 147-162
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2011_2_a10/
%G ru
%F VUU_2011_2_a10
I. I. Kharlamova; P. E. Ryabov. The electronic atlas of bifurcation diagrams of the Kowalevski–Yehia gyrostat. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 147-162. http://geodesic.mathdoc.fr/item/VUU_2011_2_a10/

[1] Kharlamov P. V., Lektsii po dinamike tverdogo tela, Izd-vo NGU, Novosibirsk, 1965, 221 pp.

[2] Kharlamov P. V., “Odin sluchai integriruemosti uravnenii dvizheniya tverdogo tela, imeyuschego nepodvizhnuyu tochku”, Mekhanika tverdogo tela, 3, 1971, 57–64

[3] Yehia H., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Commun., 13:3 (1986), 169–172 | DOI | MR | Zbl

[4] Gashenenko I. N., “Novyi klass dvizhenii tyazhelogo girostata”, Dokl. AN SSSR, 318:1 (1991), 66–68 | MR | Zbl

[5] Ryabov P. E., Nekotorye sluchai vyrozhdeniya peremennykh v odnoi zadache o dvizhenii tverdogo tela vokrug nepodvizhnoi tochki, Dep. v VINITI. 20.06.1991, No 3660-V91, VolGU, Volgograd, 1991, 9 pp.

[6] Gashenenko I. N., “Odin sluchai integriruemosti uravnenii dvizheniya girostata”, Mekhanika tverdogo tela, 24, 1992, 1–4 | MR | Zbl

[7] Gashenenko I. N., “Bifurkatsionnoe mnozhestvo zadachi o dvizhenii girostata, podchinennogo usloviyam Kovalevskoi”, Mekhanika tverdogo tela, 27, 1995, 31–35 | MR | Zbl

[8] Ryabov P. E., “O vychislenii bifurkatsionnogo mnozhestva v sluchae Kovalevskoi–Yakhi”, Mekhanika tverdogo tela, 27, 1995, 36–40 | MR | Zbl

[9] Ryabov P. E., Perestroiki bifurkatsionnogo mnozhestva v obobschennoi zadache S. V. Kovalevskoi, Dep. v VINITI. 19.02.1996, No 884-V96, VolGU, Volgograd, 1996, 7 pp.

[10] Ryabov P. E., Ob odnom svoistve bifurkatsionnykh krivykh, Dep. v VINITI. 15.01.1996, No 1954-V96, VolGU, Volgograd, 1996, 16 pp.

[11] Ryabov P. E., “Bifurkatsionnye mnozhestva v zadache o dvizhenii tverdogo tela vokrug nepodvizhnoi tochki”, Vestnik VolGU, 1996, no. 1, 41–49

[12] Gashenenko I. N., “Bifurkatsionnoe mnozhestvo v zadache o dvizhenii tyazhelogo girostata pri usloviyakh Kovalevskoi”, Dopovidi NAN Ukrainy, 1997, no. 2, 60–62 | MR | Zbl

[13] Ryabov P. E., Kharlamov M. P., “Bifurkatsii pervykh integralov v sluchae Kovalevskoi–Yakhi”, Regular and Chaotic Dynamics, 2:2 (1997), 25–40 | MR | Zbl

[14] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1 (1989), 145–173 | MR | Zbl

[15] Gashenenko I. N., “Integralnye mnogoobraziya i topologicheskie invarianty odnogo sluchaya dvizheniya girostata”, Mekhanika tverdogo tela, 29, 1997, 1–7 | MR | Zbl

[16] Gashenenko I. N., Invariantnye mnogoobraziya i mnozhestva dopustimykh skorostei v dinamike tverdogo tela, dis. $\dots$ d-ra fiz.-matem. nauk, IPMM NANU, Donetsk, 2008, 300 pp.

[17] Ryabov P. E., Bifurkatsionnoe mnozhestvo zadachi o dvizhenii tverdogo tela vokrug nepodvizhnoi tochki v sluchae Kovalevskoi–Yakhi, dis. $\dots$ kand. fiz.-matem. nauk, MGU, Moskva, 1997, 143 pp.

[18] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Laksovo predstavlenie so spektralnym parametrom dlya volchka Kovalevskoi i ego obobschenii”, Funkts. analiz i ego prilozheniya, 22:2 (1988), 87–88 | MR

[19] Kharlamov M. P., “Oblasti suschestvovaniya kriticheskikh dvizhenii obobschennogo volchka Kovalevskoi i bifurkatsionnye diagrammy”, Mekhanika tverdogo tela, 36, 2006, 13–22 | MR

[20] Kharlamov M. P., Kharlamova I. I., Shvedov E. G., “Bifurkatsionnye diagrammy na izoenergeticheskikh urovnyakh girostata Kovalevskoi–Yakhya”, Mekhanika tverdogo tela, 40, 2010, 77–90 | MR

[21] Kharlamov M. P., “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regular and Chaotic Dynamics, 10:4 (2005), 381–398 | DOI | MR | Zbl

[22] Kharlamov M. P., “Kriticheskie podsistemy girostata Kovalevskoi v dvukh postoyannykh polyakh”, Nelineinaya dinamika, 3:3 (2007), 331–348

[23] Ryabov P. E., “Analiticheskaya klassifikatsiya osobennostei integriruemogo sluchaya Kovalevskoi–Yakhya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 4, 25–30

[24] Ryabov P. E., “Algebraicheskie krivye i bifurkatsionnye diagrammy dvukh integriruemykh zadach”, Mekhanika tverdogo tela, 37, 2007, 97–111 | MR