Construction of the function of the best result for the system with simple dynamic
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 152-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents the construction the best result function for the system with simple dynamic. The first-order PDE type of eikonal is studied. Its minimax solution is proved to be the cost of the optimal time control problem.
@article{VUU_2008_2_a50,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {Construction of the function of the best result for the system with simple dynamic},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {152--154},
     year = {2008},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a50/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - Construction of the function of the best result for the system with simple dynamic
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 152
EP  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_2_a50/
LA  - ru
ID  - VUU_2008_2_a50
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T Construction of the function of the best result for the system with simple dynamic
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 152-154
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2008_2_a50/
%G ru
%F VUU_2008_2_a50
A. A. Uspenskii; P. D. Lebedev. Construction of the function of the best result for the system with simple dynamic. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 152-154. http://geodesic.mathdoc.fr/item/VUU_2008_2_a50/

[1] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka, Institut kompyuternykh issledovanii, Izhevsk, Moskva, 2003 | Zbl

[2] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I”, Matem. sb., 98:3 (1975), 450–493 | MR | Zbl

[3] Uspenskii A. A., Lebedev P. D., “Chislenno-analiticheskie metody postroeniya volnovykh frontov v zadachakh upravleniya i geometricheskoi optike”, Vestn. Tamb. un-ta. Ser. Estestvennye i tekhnicheskie nauki, 12:4 (2007), 538–539

[4] Arnold V. I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996

[5] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988

[6] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp.

[7] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | Zbl

[8] Grigoreva S. V., Pakhotinskikh V. Yu., Uspenskii A. A., Ushakov V. N., “Konstruirovanie reshenii v nekotorykh differentsialnykh igrakh s fazovymi ogranicheniyami”, Matem. sb., 196:4 (2005), 51–78