Ranking of normality tests
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 45-59

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a new approach that allows a comparative analysis of the normality tests. Using a series of distributions that consistently converge to the normal law as alternative hypotheses allowed us to introduce an interval scale by which it is possible to determine not only which of the compared criteria is better, but also how much better.
Keywords: statistical hypotheses, normality tests.
@article{VTPMK_2022_2_a3,
     author = {A. A. Skrynnikov},
     title = {Ranking of normality tests},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {45--59},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a3/}
}
TY  - JOUR
AU  - A. A. Skrynnikov
TI  - Ranking of normality tests
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 45
EP  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a3/
LA  - ru
ID  - VTPMK_2022_2_a3
ER  - 
%0 Journal Article
%A A. A. Skrynnikov
%T Ranking of normality tests
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 45-59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a3/
%G ru
%F VTPMK_2022_2_a3
A. A. Skrynnikov. Ranking of normality tests. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 45-59. http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a3/