Asymptotic expansions of solutions of singularly perturbed equations
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2022), pp. 18-32
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a first-order equation in a Banach space with a small parameter at the derivative and a second-order perturbation of smallness on the right-hand side. A solution to the Cauchy problem is constructed in the form of an asymptotic expansion in powers of a small parameter by the Vasilieva-Vishik-Lyusternik method. The operator A on the right-hand side is degenerate: we consider the case of possessing the property of having a number 0 by a normal eigenvalue and a two-dimensional kernel; core elements have no attached. Formulas for calculating the components of the regular and boundary layer parts of the expansion are determined. A condition for the regularity of degeneration is obtained. The expansion is shown to be asymptotic. An illustrative example is given.
Keywords:
first-order equation in a Banach space, small parameter at the highest derivative, perturbation square on the right-hand side, closed operator, 0-normal eigenvalue, asymptotics, Vasil'eva-Vishik-Lyusternik method.
@article{VTPMK_2022_1_a1,
author = {V. I. Uskov},
title = {Asymptotic expansions of solutions of singularly perturbed equations},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {18--32},
publisher = {mathdoc},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_1_a1/}
}
TY - JOUR AU - V. I. Uskov TI - Asymptotic expansions of solutions of singularly perturbed equations JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2022 SP - 18 EP - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2022_1_a1/ LA - ru ID - VTPMK_2022_1_a1 ER -
V. I. Uskov. Asymptotic expansions of solutions of singularly perturbed equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2022), pp. 18-32. http://geodesic.mathdoc.fr/item/VTPMK_2022_1_a1/