Mots-clés : orbital evolution, MEGNO.
@article{VTGU_2023_86_a0,
author = {A. G. Aleksandrova and N. A. Popandopulo and N. A. Kucheryavchenko and V. A. Avdyushev and T. V. Bordovitsyna},
title = {Numerical model of the motion of artificial {Earth} satellites},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--20},
year = {2023},
number = {86},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a0/}
}
TY - JOUR AU - A. G. Aleksandrova AU - N. A. Popandopulo AU - N. A. Kucheryavchenko AU - V. A. Avdyushev AU - T. V. Bordovitsyna TI - Numerical model of the motion of artificial Earth satellites JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 5 EP - 20 IS - 86 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a0/ LA - ru ID - VTGU_2023_86_a0 ER -
%0 Journal Article %A A. G. Aleksandrova %A N. A. Popandopulo %A N. A. Kucheryavchenko %A V. A. Avdyushev %A T. V. Bordovitsyna %T Numerical model of the motion of artificial Earth satellites %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 5-20 %N 86 %U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a0/ %G ru %F VTGU_2023_86_a0
A. G. Aleksandrova; N. A. Popandopulo; N. A. Kucheryavchenko; V. A. Avdyushev; T. V. Bordovitsyna. Numerical model of the motion of artificial Earth satellites. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 5-20. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a0/
[1] Aleksandrova A.G., Avdyushev V.A., Popandopulo N.A., Bordovitsyna T.V., “Chislennoe mo delirovanie dvizheniya okolozemnykh ob'ektov v srede parallelnykh vychislenii”, Izvestiya vuzov. Fizika, 64:8 (2021), 168–175 | DOI | Zbl
[2] Bordovitsyna T.V., Avdyushev V.A., Chuvashov I.N., Aleksandrova A.G., Tomilova I.V., “Chislennoe modelirovanie dvizheniya sistem ISZ v srede parallelnykh vychislenii”, Izvestiya. vuzov. Fizika, 52:10/2 (2009), 5–11
[3] Bordovitsyna T.V., Aleksandrova A.G., Chuvashov I.N., “Kompleks algoritmov i programm dlya issledovaniya khaotichnosti v dinamike iskusstvennykh sputnikov Zemli”, Izvestiya vuzov. Fizika, 53:8/2 (2010), 14–21
[4] Popandopulo N.A., Aleksandrova A.G., Bordovitsyna T.V., “Analiz dinamicheskoi struktu ry vekovykh rezonansov v okololunnom orbitalnom prostranstve”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 77, 110–124 | DOI | MR
[5] Everhart E., “Implicit Single-Sequence Methods for Integrating Orbits”, Celestial Mechanics, 10:1 (1974), 35–55 | DOI | MR | Zbl
[6] Everhart E., “An efficient integrator that uses Gauss-Radau spacings”, Dynamics of Comets: Their Origin and Evolution, Astrophysics and Space Science Library, 115, 1985, 185–202 | DOI
[7] Avdyushev V.A., “Novyi kollokatsionnyi integrator dlya resheniya zadach dinamiki. I. Teoreticheskie osnovy”, Izvestiya vuzov. Fizika, 63:11 (755) (2020), 131–140 | DOI
[8] Petit G., Luzum B., IERS Technical note 36, Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, 2010
[9] Cunningham L.E., “On the Computation of the Spherical Harmonic Terms Needed During the Numerical Integration of the Orbital Motion of an Artificial Satellite”, Celestial Mechanics, 2 (1970), 207–216 | DOI | MR | Zbl
[10] Lunar Prospector Spherical Harmonics and Gravity Models, 2006 (accessed: 03.05.2023) https://pds-geosciences.wustl.edu/dataserv/gravity_models.htm
[11] Duboshin N.G., Nebesnaya mekhanika. Osnovnye zadachi i metody, Nauka, M., 1968
[12] IERS Conventions, 2003 (accessed: 03.05.2023) http://tai.bipm.org/iers/conv2003/conv2003.html
[13] Folkner W.M., Park R.S., Planetary ephemeris DE438 for Juno, Technical Report IOM392R-18-004, Jet Propulsion Laboratory, Pasadena, CA, 2018
[14] Bordovitsyna T.V., Avdyushev V.A., Teoriya dvizheniya iskusstvennykh sputnikov Zemli. Analiticheskie i chislennye metody, Izd-vo Tom. un-ta, Tomsk, 2007
[15] Robertson H.P., “Dynamical Effects of Radiation in the Solar System”, Monthly Notices of the Royal Astronomical Society, 97 (1937), 423–438 | DOI | Zbl
[16] Vokrouhlicky D., Farinella P., Mignard F., “Solar radiation pressure perturbations for Earth's satellites, III globalatmospheric phenomena and albedo effect”, Astronomy Astrophysics, 290 (1993), 324–334
[17] Vokrouhlicky D., Farinella P., Mignard F., “Solar radiation pressure perturbations for Earth satellites. IV. Effects of the Earth's polar flattening on the shadow structure and the penumbra transitions”, Astronomy Astrophysics, 307 (1996), 635–644
[18] Picone M., Hedin A.E., Drob D., Naval Research Laboratory, , 2015 (access: 30.11.2015) http://modelweb.gsfc.nasa.gov/atmos/nrlmsise00.html
[19] Brumberg V.A., “On Relativistic Equations of Motion of an Earth Satellite”, Celestial Mechanics and Dynamical Astronomy, 88 (2004), 209–225 | DOI | MR | Zbl
[20] Brumberg V.A., Ivanova T.V., “Precession/Nutation Solution Consistent with the General Planetary Theory”, Celestial Mechanics and Dynamical Astronomy, 97:3 (2007), 189–210 | DOI | MR | Zbl
[21] Cincotta P.M., Simo C., “Simple tools to study global dynamics in non-axisymmetric galactic potentials - I”, Astronomy and Astrophysics Supplement, 147 (2000), 205–228 | DOI
[22] Cincotta P.M., Girdano C.M., Simo C., “Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits”, Physica D, 182 (2003), 151–178 | DOI | MR | Zbl
[23] Valk S., Delsate N., Lemaitre A., Carletti T., “Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator”, Advances in Space Research, 43:7 (2009), 1509–1526 | DOI
[24] Popandopulo N.A., Aleksandrova A.G., Bordovitsyna T.V., “K obosnovaniyu chislennoanaliticheskoi metodiki vyyavleniya vekovykh rezonansov”, Izvestiya vuzov. Fizika, 65:6 (775) (2022), 47–52 | DOI
[25] Guillou A., Soule J.L., “La Resolution Numerique des Problemes Differentielles aux Conditions Initials par des Methodes de Collocation”, ESAIM: Mathematical Modelling and Numerical Analysis - Modelisation Mathematique et Analyse Numerique, 3:R3 (1969), 17–44 | MR | Zbl
[26] Wright K., “Some relationships between implicit Runge-Kutta, collocation and Lanczosx methods, and their stability properties”, BIT Numerical Mathematics, 10 (1970), 217–227 | DOI | MR | Zbl
[27] Hairer E., Norsett S. P., Wanner G., Solving Ordinary Differential Equations I. Nonstiff Problems, Springer, 2008 | MR
[28] Hairer E., Lubich C., Wanner G., Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, 2006 | MR | Zbl