Numerical model of the motion of artificial Earth satellites
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 5-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents the latest version of the software package “Numerical model of the motion of artificial Earth satellites”. Two versions of the program have been developed: one for a personal computer and another for the “SKIF Cyberia” supercomputer complex with parallelization of computational tasks at Tomsk State University. The software can take into account the following perturbing factors: geopotential nonsphericity effect, secular variations in the first zonal harmonics and tidal deformations within the Earth, gravitational influence of the Sun and Moon, radiation forces, atmospheric drag acceleration, influence of major planets, selenopotential harmonics, and relativistic effects. To study the chaotic nature of the orbital motion of near-Earth satellites, the developed software package is improved with the possibility of calculating the MEGNO parameter. The numerical model allows the user to additionally calculate resonant parameters using analytical and numerical techniques when studying the features of the orbital evolution of near-Earth objects. In the presented version of the software package for a personal computer, the interaction with the user is carried out by means of the software interface. The interface additionally allows one to create an input text file based on the completed data for further use in the version for the “SKIF Cyberia” supercomputer.
Keywords: numerical methods, artificial Earth satellites (AES), chaotic and stable orbits
Mots-clés : orbital evolution, MEGNO.
@article{VTGU_2023_86_a0,
     author = {A. G. Aleksandrova and N. A. Popandopulo and N. A. Kucheryavchenko and V. A. Avdyushev and T. V. Bordovitsyna},
     title = {Numerical model of the motion of artificial {Earth} satellites},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--20},
     year = {2023},
     number = {86},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrova
AU  - N. A. Popandopulo
AU  - N. A. Kucheryavchenko
AU  - V. A. Avdyushev
AU  - T. V. Bordovitsyna
TI  - Numerical model of the motion of artificial Earth satellites
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 5
EP  - 20
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a0/
LA  - ru
ID  - VTGU_2023_86_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrova
%A N. A. Popandopulo
%A N. A. Kucheryavchenko
%A V. A. Avdyushev
%A T. V. Bordovitsyna
%T Numerical model of the motion of artificial Earth satellites
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 5-20
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a0/
%G ru
%F VTGU_2023_86_a0
A. G. Aleksandrova; N. A. Popandopulo; N. A. Kucheryavchenko; V. A. Avdyushev; T. V. Bordovitsyna. Numerical model of the motion of artificial Earth satellites. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 5-20. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a0/

[1] Aleksandrova A.G., Avdyushev V.A., Popandopulo N.A., Bordovitsyna T.V., “Chislennoe mo delirovanie dvizheniya okolozemnykh ob'ektov v srede parallelnykh vychislenii”, Izvestiya vuzov. Fizika, 64:8 (2021), 168–175 | DOI | Zbl

[2] Bordovitsyna T.V., Avdyushev V.A., Chuvashov I.N., Aleksandrova A.G., Tomilova I.V., “Chislennoe modelirovanie dvizheniya sistem ISZ v srede parallelnykh vychislenii”, Izvestiya. vuzov. Fizika, 52:10/2 (2009), 5–11

[3] Bordovitsyna T.V., Aleksandrova A.G., Chuvashov I.N., “Kompleks algoritmov i programm dlya issledovaniya khaotichnosti v dinamike iskusstvennykh sputnikov Zemli”, Izvestiya vuzov. Fizika, 53:8/2 (2010), 14–21

[4] Popandopulo N.A., Aleksandrova A.G., Bordovitsyna T.V., “Analiz dinamicheskoi struktu ry vekovykh rezonansov v okololunnom orbitalnom prostranstve”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 77, 110–124 | DOI | MR

[5] Everhart E., “Implicit Single-Sequence Methods for Integrating Orbits”, Celestial Mechanics, 10:1 (1974), 35–55 | DOI | MR | Zbl

[6] Everhart E., “An efficient integrator that uses Gauss-Radau spacings”, Dynamics of Comets: Their Origin and Evolution, Astrophysics and Space Science Library, 115, 1985, 185–202 | DOI

[7] Avdyushev V.A., “Novyi kollokatsionnyi integrator dlya resheniya zadach dinamiki. I. Teoreticheskie osnovy”, Izvestiya vuzov. Fizika, 63:11 (755) (2020), 131–140 | DOI

[8] Petit G., Luzum B., IERS Technical note 36, Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, 2010

[9] Cunningham L.E., “On the Computation of the Spherical Harmonic Terms Needed During the Numerical Integration of the Orbital Motion of an Artificial Satellite”, Celestial Mechanics, 2 (1970), 207–216 | DOI | MR | Zbl

[10] Lunar Prospector Spherical Harmonics and Gravity Models, 2006 (accessed: 03.05.2023) https://pds-geosciences.wustl.edu/dataserv/gravity_models.htm

[11] Duboshin N.G., Nebesnaya mekhanika. Osnovnye zadachi i metody, Nauka, M., 1968

[12] IERS Conventions, 2003 (accessed: 03.05.2023) http://tai.bipm.org/iers/conv2003/conv2003.html

[13] Folkner W.M., Park R.S., Planetary ephemeris DE438 for Juno, Technical Report IOM392R-18-004, Jet Propulsion Laboratory, Pasadena, CA, 2018

[14] Bordovitsyna T.V., Avdyushev V.A., Teoriya dvizheniya iskusstvennykh sputnikov Zemli. Analiticheskie i chislennye metody, Izd-vo Tom. un-ta, Tomsk, 2007

[15] Robertson H.P., “Dynamical Effects of Radiation in the Solar System”, Monthly Notices of the Royal Astronomical Society, 97 (1937), 423–438 | DOI | Zbl

[16] Vokrouhlicky D., Farinella P., Mignard F., “Solar radiation pressure perturbations for Earth's satellites, III globalatmospheric phenomena and albedo effect”, Astronomy Astrophysics, 290 (1993), 324–334

[17] Vokrouhlicky D., Farinella P., Mignard F., “Solar radiation pressure perturbations for Earth satellites. IV. Effects of the Earth's polar flattening on the shadow structure and the penumbra transitions”, Astronomy Astrophysics, 307 (1996), 635–644

[18] Picone M., Hedin A.E., Drob D., Naval Research Laboratory, , 2015 (access: 30.11.2015) http://modelweb.gsfc.nasa.gov/atmos/nrlmsise00.html

[19] Brumberg V.A., “On Relativistic Equations of Motion of an Earth Satellite”, Celestial Mechanics and Dynamical Astronomy, 88 (2004), 209–225 | DOI | MR | Zbl

[20] Brumberg V.A., Ivanova T.V., “Precession/Nutation Solution Consistent with the General Planetary Theory”, Celestial Mechanics and Dynamical Astronomy, 97:3 (2007), 189–210 | DOI | MR | Zbl

[21] Cincotta P.M., Simo C., “Simple tools to study global dynamics in non-axisymmetric galactic potentials - I”, Astronomy and Astrophysics Supplement, 147 (2000), 205–228 | DOI

[22] Cincotta P.M., Girdano C.M., Simo C., “Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits”, Physica D, 182 (2003), 151–178 | DOI | MR | Zbl

[23] Valk S., Delsate N., Lemaitre A., Carletti T., “Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator”, Advances in Space Research, 43:7 (2009), 1509–1526 | DOI

[24] Popandopulo N.A., Aleksandrova A.G., Bordovitsyna T.V., “K obosnovaniyu chislennoanaliticheskoi metodiki vyyavleniya vekovykh rezonansov”, Izvestiya vuzov. Fizika, 65:6 (775) (2022), 47–52 | DOI

[25] Guillou A., Soule J.L., “La Resolution Numerique des Problemes Differentielles aux Conditions Initials par des Methodes de Collocation”, ESAIM: Mathematical Modelling and Numerical Analysis - Modelisation Mathematique et Analyse Numerique, 3:R3 (1969), 17–44 | MR | Zbl

[26] Wright K., “Some relationships between implicit Runge-Kutta, collocation and Lanczosx methods, and their stability properties”, BIT Numerical Mathematics, 10 (1970), 217–227 | DOI | MR | Zbl

[27] Hairer E., Norsett S. P., Wanner G., Solving Ordinary Differential Equations I. Nonstiff Problems, Springer, 2008 | MR

[28] Hairer E., Lubich C., Wanner G., Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, 2006 | MR | Zbl