@article{VTGU_2023_84_a9,
author = {A. A. Svetashkov and N. A. Kupriyanov and M. S. Pavlov},
title = {The method of separation of variables for linear viscoelastic anisotropic body problems},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {123--138},
year = {2023},
number = {84},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a9/}
}
TY - JOUR AU - A. A. Svetashkov AU - N. A. Kupriyanov AU - M. S. Pavlov TI - The method of separation of variables for linear viscoelastic anisotropic body problems JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 123 EP - 138 IS - 84 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a9/ LA - ru ID - VTGU_2023_84_a9 ER -
%0 Journal Article %A A. A. Svetashkov %A N. A. Kupriyanov %A M. S. Pavlov %T The method of separation of variables for linear viscoelastic anisotropic body problems %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 123-138 %N 84 %U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a9/ %G ru %F VTGU_2023_84_a9
A. A. Svetashkov; N. A. Kupriyanov; M. S. Pavlov. The method of separation of variables for linear viscoelastic anisotropic body problems. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 123-138. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a9/
[1] J. C. Maxwell, “On the dynamical theory of gases”, Philosophical Transactions, 157 (1867), 49–88 | DOI
[2] L. Boltzman, “Zur theorie der elastischen nachwirkung”, Wiener Berichte, 70 (1874), 275–306 | DOI
[3] V. Volterra, Lecons sur Les Fonctions de Lignes, Gautierr Villars, Paris, 1912, 230 pp.
[4] V. Volterra, Theory of Functionals and of Integral and integrodifferential Equations, Blackie Son Limited, London–Glasgow, 1930, 226 pp.
[5] R. M. Cristensen, Theory of Viscoelasticity: An Introduction, Academic, New York, 1980, 364 pp.
[6] Yu. N. Rabotnov, Polzuchest elementov konstruktsii, Nauka, M., 1966, 752 pp.
[7] A. A. Ilyushin, B. E. Pobedrya, Osnovy matematicheskoi teorii termo-vyazkouprugosti, Nauka, M., 1970, 280 pp.
[8] R. A. Schapery, “Stress analysis of viscoelastic composite materials”, Journal of Composite Materials, 1:3 (1967), 228–267 | DOI
[9] W. Wu, G. Jiang, S. Huang, C. J. Leo, “Vertical dynamic response of pile embedded in layered transversely isotropic soil”, Mathematical Problems in Engineering, 2014 (2014), 126916, 12 pp. | Zbl
[10] S. A. Kaloerov, A. A. Koshkin, “Solving the problem of linear viscoelasticity for piecewise homogeneous anisotropic plates”, International Applied Mechanics, 53:6 (2017), 1123–1129 | DOI | MR
[11] A. A. Kaminskii, M. F. Selivanov, “A Method for solving boundary-value problems of linear viscoelasticity for anisotropic composites”, International Applied Mechanics, 39:11 (2003), 1294–1304 | DOI | Zbl
[12] G. A. Holzapfel, T. C. Gasser, “A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications”, Computer Methods in Applied Mechanics and Engineering, 190:34 (2003), 4379–4403 | DOI
[13] J. C. Simo, “On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects”, Computer Methods in Applied Mechanics and Engineering, 60 (1987), 153–173 | DOI | Zbl
[14] L. A. Galin, Kontaktnye zadachi teorii uprugosti i vyazkouprugosti, Nauka, M., 1980, 304 pp.
[15] M. N.M. Allam, B. E. Pobedrya, “K resheniyu kvazistaticheskikh zadach anizotropnoi vyazko uprugosti”, Izvestiya Akademii nauk Armyanskoi SSR. Mekhanika, 1978, no. 2, 19–27 | Zbl
[16] A. A. Svetashkov, N. A. Kupriyanov, M. S. Pavlov, A. A. Vakurov, “Variable separation method for solving boundary value problems of isotropic linearly viscoelastic bodies”, Acta Mechanica, 231:9 (2020), 3583–3606 | DOI | MR | Zbl
[17] B. E. Pobedrya, Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984, 336 pp.
[18] A. Svetashkov, N. Kupriyanov, K. Manabaev, “Modification of the iterative method for solving linear viscoelasticity boundary value problems and its implementation by finite element method”, Acta Mechanica, 229:6 (2018), 2539–2559 | DOI | MR | Zbl
[19] S. G. Lekhnitskii, Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977, 416 pp.