The method of separation of variables for linear viscoelastic anisotropic body problems
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 123-138
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Nowadays, polymers are widely used in various fields. Such materials often exhibit viscoelastic properties. Engineering analysis considering viscoelasticity is laborious and requires certain expertize. This paper proposes a method for solving linear viscoelastic
problems in a simpler way and presents a variant of the solution extension to an anisotropic case. 
The Volterra correspondence principle allows one to analyze viscoelastic bodies on the 
basis of the analytical solution like an elastic problem. The developed method is described in a similar way. It allows determining of some functions of time and material 
constants whose values at a certain point in time can be used as elastic constants. The solutions to these two problems are identical. To substantiate this statement, the authors 
consider the conditions for maximum equivalence of specific potential energy functionals 
of strain and stress (for the cases of kinematic and force boundary conditions, respectively)
of viscoelastic and reference elastic media. The functions satisfying these conditions 
have been found, and a new method for solving the problems of linear viscoelasticity of 
an anisotropic body has been shown using several examples.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
effective modules of Lagrange and Castilian types, variational problem, anisotropy, orthotropy, integral operators.
                    
                  
                
                
                @article{VTGU_2023_84_a9,
     author = {A. A. Svetashkov and N. A. Kupriyanov and M. S. Pavlov},
     title = {The method of separation of variables for linear viscoelastic anisotropic body problems},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {123--138},
     publisher = {mathdoc},
     number = {84},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_84_a9/}
}
                      
                      
                    TY - JOUR AU - A. A. Svetashkov AU - N. A. Kupriyanov AU - M. S. Pavlov TI - The method of separation of variables for linear viscoelastic anisotropic body problems JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 123 EP - 138 IS - 84 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2023_84_a9/ LA - ru ID - VTGU_2023_84_a9 ER -
%0 Journal Article %A A. A. Svetashkov %A N. A. Kupriyanov %A M. S. Pavlov %T The method of separation of variables for linear viscoelastic anisotropic body problems %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 123-138 %N 84 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2023_84_a9/ %G ru %F VTGU_2023_84_a9
A. A. Svetashkov; N. A. Kupriyanov; M. S. Pavlov. The method of separation of variables for linear viscoelastic anisotropic body problems. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 84 (2023), pp. 123-138. http://geodesic.mathdoc.fr/item/VTGU_2023_84_a9/
