Ablation of small meteor bodies: comparison of solid and porous body models
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 110-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An ablation model is used to describe the interaction of small meteoroids with the Earth's atmosphere. In this model, the mass loss of a meteoroid is determined using the saturated vapor pressure of the assumed meteoroid substance. The meteoroid is considered in two modifications as a solid and a porous object. An automated method for estimating the parameters of meteoroids (mass, size, and density) from light curves is developed based on the model of small meteor body ablation, which has been used to estimate the parameters of the Perseid meteors with a brightness of $-2^m$ to $+2^m$. The effect of the dependence for saturated vapor pressure and the residual on the parameters of the meteoric body is analyzed. It is shown that for the same meteor, the use of different dependences for pressure or different residuals leads to the dispersion of the meteor mass estimate of not more than $10$$15\%$ of the average value, and for the meteor size not more than $35$$40\%$. The difference between the maximum and minimum density estimates can be up to five times. The selected dependence for the saturation vapor pressure strongly affects the shape of the light curve, the quality of its approximation, and the density estimate. The average porosity for all meteoroids is $86\pm 5\%$, which is close to the values for IDP. The density of meteoroids is determined with a large error. The selected model better describes meteoroids with the degree of skewness of the light curve in the range of $0.4$$0.5$. The use of the porous body model has little effect on the mass estimate, while the density estimates increase by up to $2$ times.
Keywords: meteors, meteoroids, Perseids.
Mots-clés : ablation model
@article{VTGU_2023_81_a9,
     author = {V. V. Efremov and O. P. Popova and D. O. Glazachev and A. Margonis and J. Oberst and A. P. Kartashova},
     title = {Ablation of small meteor bodies: comparison of solid and porous body models},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {110--122},
     year = {2023},
     number = {81},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_81_a9/}
}
TY  - JOUR
AU  - V. V. Efremov
AU  - O. P. Popova
AU  - D. O. Glazachev
AU  - A. Margonis
AU  - J. Oberst
AU  - A. P. Kartashova
TI  - Ablation of small meteor bodies: comparison of solid and porous body models
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 110
EP  - 122
IS  - 81
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_81_a9/
LA  - ru
ID  - VTGU_2023_81_a9
ER  - 
%0 Journal Article
%A V. V. Efremov
%A O. P. Popova
%A D. O. Glazachev
%A A. Margonis
%A J. Oberst
%A A. P. Kartashova
%T Ablation of small meteor bodies: comparison of solid and porous body models
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 110-122
%N 81
%U http://geodesic.mathdoc.fr/item/VTGU_2023_81_a9/
%G ru
%F VTGU_2023_81_a9
V. V. Efremov; O. P. Popova; D. O. Glazachev; A. Margonis; J. Oberst; A. P. Kartashova. Ablation of small meteor bodies: comparison of solid and porous body models. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 110-122. http://geodesic.mathdoc.fr/item/VTGU_2023_81_a9/

[1] D. Subasinghe, M. Campbell-Brown, E. Stokan, “Luminous efficiency estimates of meteors-I. Uncertainty analysis”, Planetary and Space Science, 143 (2017), 71–77 | DOI

[2] O. Popova, J. Borovicka, M. Campbell-Brown, “Modelling the entry of meteoroids”, Meteo roids: Sources of Meteors on the Earth and Beyond, eds. G.O. Ryabova, D.J. Asher, M.D. Campbell-Brown, Cambridge University Press, Cambridge, 2019, 9–36 | DOI

[3] V. A. Bronshten, Physics of meteoric phenomena, Reidel Publishing Co, Dordrecht, 1983, 356 pp.

[4] V. Lebedinets, Pyl v verkhnei atmosfere i v kosmose. Meteory, Gidrometeoizdat, L., 1980, 248 pp.

[5] V. N. Lebedinec, V. B. Suskova, “Evaporation and deceleration of small meteoroids”, Symposium International Astronomical Union, 33 (1968), 193–204 | DOI

[6] J. Jones, T. R. Kaiser, “The effects of thermal radiation, conduction and metoriod heat capacity on meteoric ablation”, Mon. Not. R. Astron. Soc., 133 (1966), 411–420 | DOI

[7] V. V. Efremov, O. P. Popova, D. O. Glazachev, A. P. Kartashova, “Opredelenie parametrov melkikh meteornykh tel po nablyudatelnym dannym”, sb. nauch. tr. IDG RAN, Dinamicheskie protsessy v geosferakh, 10, GEOS, M., 2018, 150–157 | DOI

[8] A. Margonis, A. Christou, J. Oberst, “Observations of meteors in the Earth's atmosphere: Reducing data from dedicated double-station wide-angle cameras”, Astronomy and Astrophysics, 618:99 (2018), 1–11 | DOI

[9] J. M.C. Plane, “Cosmic dust in the earth's atmosphere”, Chemical Society Reviews, 41:19 (2012), 6507–6518 | DOI

[10] Carrillo-Sanchez J., Nesvornỳ D., Pokornỳ P., Janches D., Plane J., “Sources of cosmic dust in the Earth's atmosphere”, Geophysical Research Letters, 43 (2016), 11–19 | DOI

[11] M. J. Genge, J. Larse, M. Van Ginneken, M. D. Suttle, “An urban collection of modern-day large micrometeorites: Evidence for variations in the extraterrestrial dust flux through the Quaternary”, Geology, 45 (2017), 119–122 | DOI

[12] M. Campbell-Brown, D. Koschny, “Model of the ablation of faint meteors”, Astronomy Astrophysics, 418 (2004), 751–758 | DOI

[13] J. B. Kikwaya, M. Campbell-Brown, P. Brown, “Bulk density of small meteoroids”, Astronomy Astrophysics, 530:113 (2011), 1–17 | DOI

[14] J. Borovicka, R. J. Macke, M. D. Campbell-Brown, “Physical and chemical properties of meteo roids”, Meteoroids: : Sources of Meteors on the Earth and Beyond, eds. G.O. Ryabova, D.J. Asher, M.D. Campbell-Brown, Cambridge University Press, Cambridge, 2019, 37–62 | DOI

[15] L. S. Leibenzon, Sobranie trudov, v. 2, Podzemnaya gazogidrodinamika, Izd-vo AN SSSR, M., 1953, 544 pp.

[16] Zolensky M., Nakamura-Messenger K., Rietmeijer F., “Comparing Wild 2 particles to chondrites and IDPs”, Meteoritics Planetary Science, 43 (2008), 261–272 | DOI

[17] M. Patzold, T. P. Ander, M. Hahn, “The Nucleus of comet 67P/Churyumov-Gerasimenko. Part I: The global view-nucleus mass, mass-loss, porosity, and implications”, Monthly Notices of the Royal Astronomical Society, 483 (2019), 2337–2346 | DOI

[18] F. J. Rietmeijer, “Dynamic pyrometamorphism during atmospheric entry of large (10 micron) pyrrhotite fragments from cluster IDPs”, Meteoritics Planetary Science, 39 (2004), 1869–1887 | DOI

[19] P. Matlovic, J. Toth, L. Kornos, S. Loehle, “On the sodium enhancement in spectra of slow meteors and the origin of Na-rich meteoroids”, Icarus, 347 (2020), 113817 | DOI

[20] V. Efremov, O. Popova, D. Glazachev, A. Margonis, J. Oberst, A. Kartashova, “Small Meteor Ablation Model: Applying to Perseid Observations”, Contributions of the Astronomical Observatory Skalnate Pleso, 51 (2021), 186–206 | DOI

[21] G. C.C. Costa, N. S. Jacobson, B. Fegley Jr, “Vaporization and thermodynamics of forsterite rich olivine and some implications for silicate atmospheres of hot rocky exoplanets”, Icarus, 289 (2017), 42–55 | DOI

[22] P. Jenniskens, Meteor showers, their parent comets, Cambridge University Press, Cambridge, 2006, 790 pp. | DOI

[23] D. Vida, P. G. Brown, M. Campbell-Brown, “Modelling the measurement accuracy of preat mosphere velocities of meteoroids”, Monthly Notices of the Royal Astronomical Society, 479:4 (2018), 4307–4319 | DOI

[24] Z. Sekanina, P. W. Chodas, “Comet C/2011 W3 (Lovejoy): Orbit determination, outbursts, disintegration of nucleus, dust-tail morphology, and relationship to new cluster of bright sun grazers”, The Astrophysical Journal, 757 (2012), 127–160 | DOI

[25] H. Kimura, H. Ishimoto, T. Mukai, “A study on solar dust ring formation based on fractal dust models”, Astronomy and Astrophysics, 326 (1997), 263–270

[26] L. Jacchia, F. Verniani, R. E. Briggs, “An analysis of the atmospheric trajectories of 413 precisely reduced photographic meteors”, Smithsonian Contributions to Astrophysics, 10 (1967), 1–139 | DOI

[27] F. Verniani, “On the luminous efficiency of meteors”, Smithsonian Contributions to Astrophysics, 8:5 (1965), 141–171 | DOI

[28] D. Fleming, R. Hawkes, J. Jones, “Light curves of faint television meteors”, Meteoroids and their Parent Bodies, eds. J. Stohl, I. Williams, Astronomical Institute SAS, Bratislava, 1993, 261–264

[29] L. Bellot Rubio, M. M. Gonzalez, L. Herrer, “R, Modeling the photometric and dynamical behavior of Super-Schmidt meteors in the Earth's atmosphere”, Astronomy Astrophysics, 389 (2002), 680–691 | DOI

[30] P. Babadzhano, G. Kokhirova, “Densities and porosities of meteoroids”, Astronomy Astrophysics, 495 (2009), 353–358 | DOI

[31] K. Hornung, S. Merouane, M. Hilchenbac, “A first assessment of the strength of cometary particles collected in-situ by the COSIMA instrument onboard ROSETTA”, Planetary and Space Science, 133 (2016), 63–75 | DOI