Effect of a gas flow structure in an axisymmetric channel on the inhomogeneous temperature field formation in a low-melting cylinder
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 149-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a study of the interaction between high-speed airflow and the surface of a solid low-melting material in a flowing channel of a model body. Both numerical and experimental approaches are used to solve the problem, which allows one to perform a comprehensive analysis of the processes under study. Numerical simulation conditions correspond to aerodynamic tests in the experimental facility. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are used to describe a gas flow. When solving the problem, the coupled heat-transfer and turbulence are taken into account. The low-temperature gas-dynamic processes are considered, while the chemical reactions and phase transition are neglected. As a result of numerical simulations, the flow structure and regime in a flowing channel of the model are determined, as well as the pressure and temperature distributions in the near-wall region of a solid combustible material. The gas flow regime corresponds to an underexpanded jet flow with the separation of the boundary layer and the formation of the intense heat-transfer regions at the initial section of the flowing channel. According to the numerical simulation results, in aerodynamic tests with a Mach number of 6, the melting point is attained in the near-wall region of the solid combustible material (polyethylene, polyoxymethylene, and wax). Aerodynamic tests are carried out to validate the obtained results. Experimental results show that the variation in the flowing channel diameter in the thick-wall cylinder made of polyethylene and polyoxymethylene is induced by thermal expansion. In aerodynamic tests with a wax cylinder, the mass reduction and the fusion of the solid-gas interface are revealed.
Keywords: gas flow in a channel, separated flow, coupled heat transfer, low-melting materials.
@article{VTGU_2023_81_a12,
     author = {N. P. Skibina and V. V. Faraponov},
     title = {Effect of a gas flow structure in an axisymmetric channel on the inhomogeneous temperature field formation in a low-melting cylinder},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {149--161},
     year = {2023},
     number = {81},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_81_a12/}
}
TY  - JOUR
AU  - N. P. Skibina
AU  - V. V. Faraponov
TI  - Effect of a gas flow structure in an axisymmetric channel on the inhomogeneous temperature field formation in a low-melting cylinder
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 149
EP  - 161
IS  - 81
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_81_a12/
LA  - ru
ID  - VTGU_2023_81_a12
ER  - 
%0 Journal Article
%A N. P. Skibina
%A V. V. Faraponov
%T Effect of a gas flow structure in an axisymmetric channel on the inhomogeneous temperature field formation in a low-melting cylinder
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 149-161
%N 81
%U http://geodesic.mathdoc.fr/item/VTGU_2023_81_a12/
%G ru
%F VTGU_2023_81_a12
N. P. Skibina; V. V. Faraponov. Effect of a gas flow structure in an axisymmetric channel on the inhomogeneous temperature field formation in a low-melting cylinder. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 81 (2023), pp. 149-161. http://geodesic.mathdoc.fr/item/VTGU_2023_81_a12/

[1] P. V. Bulat, Sverkhzvukovoe techenie v kanale s rasshireniem, dis. ... kand. fiz.-mat. nauk, SPb, 2012, 140 pp.

[2] P. Chzhen, Otryvnye techeniya, v. 1, Mir, M., 1972, 298 pp.

[3] V. I. Terekhov, T. V. Bogatko, “Vliyanie teplovoi predystorii na turbulentnoe otryvnoe techenie pri vnezapnom rasshirenii truby”, Teplofizika i aeromekhanika, 18:2 (2011), 225–232

[4] V. I. Terekhov, T. V. Bogatko, “Vliyanie tolschiny pogranichnogo sloya pered otryvom potoka na aerodinamicheskie kharakteristiki i teploobmen za vnezapnym rasshireniem v krugloi trube”, Teplofizika i aeromekhanika, 15:1 (2008), 99–106

[5] S. R. Batenko, V. I. Terekhov, “Vliyanie dinamicheskoi predystorii potoka na aerodinamiku laminarnogo otryvnogo techeniya v kanale za obratnym pryamougolnym ustupom”, Prikladnaya mekhanika i tekhnicheskaya fizika, 43:6 (2002), 84–92 | Zbl

[6] O. A. Dushina, V. M. Molochnikov, A. A. Paerelii, N. I. Mikheev, V. V. Lemanov, “Struktura potoka za vystupom v kanale v usloviyakh laminarno-turbulentnogo perekhoda”, Teplo fizika i aeromekhanika, 17:3 (2010), 349–361

[7] V. M. Molochnikov, A. B. Mazo, A. V. Malyukov, E. I. Kalinin, N. I. Mikheev, Dushina O.A, A. A. Paerelii, “Osobennosti formirovaniya vikhrevykh struktur v otryvnom techenii za vystupom v kanale pri perekhode k turbulentnosti”, Teplofizika i aeromekhanika, 21:3 (2014), 325–334

[8] V. V. Nosatov, P. A. Semenev, “Raschetno-eksperimentalnoe issledovanie sverkhzvukovogo turbulentnogo otryvnogo techeniya i lokalnoi teplootdachi v ploskom kanale s vnezapnym rasshireniem”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo univer siteta im. N.E. Baumana. Ser. Estestvennye nauki, 2014, no. 1 (52), 66–77

[9] N. P. Skibina, V. V. Faraponov, “Issledovanie vzaimodeistviya sverkhzvukovogo techeniya gaza s legkoplavkim materialom v kamere sgoraniya pryamotochnogo vozdushno reaktivnogo dvigatelya na tverdom toplive”, Vychislitelnaya mekhanika sploshnykh sred, 14:3 (2021), 278–288

[10] E. Maslov, V. Faraponov, V. Arkhipov, I. Zharova, E. Kozlov, N. Savkina, “Investigation of working processes in a flowing channel of ramjet engine”, Thermal Science, 23:2 (2019), 531–536 | DOI

[11] N. P. Skibina, S. A. Tyrtyshnyi, V. V. Faraponov, “Eksperimentalno-teoreticheskoe issledovanie raspredeleniya davleniya vdol stenki pri dvizhenii sverkhzvukovogo potoka gaza v osesimmetrichnom kanale s vnezapnym rasshireniem”, Teplofizika i aeromekhanika, 29:1 (2022), 91–101

[12] S. M. Gorlin, I. I. Slezinger, Aeromekhanicheskie izmereniya (metody i pribory), Nauka, M., 1964, 720 pp.

[13] A. Yu. Snegirev, Vysokoproizvoditelnye vychisleniya v tekhnicheskoi fizike. Chislennoe modelirovanie turbulentnykh techenii, Izd-vo Politekhn. un-ta, SPb., 2009, 143 pp.

[14] ANSYS FLUENT 12.1 Theory Guide, Solver Theory, ANSYS Inc., 2010

[15] V. I. Zvegintsev, Gazodinamicheskie ustanovki kratkovremennogo deistviya, v. I, Ustanovki dlya nauchnykh issledovanii, Parallel, Novosibirsk, 551 pp.