Periodic combustion regimes for thermally coupled SHS systems with a thermocapillary melt flow
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 108-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a three-dimensional mathematical model of self-propagating high-temperature synthesis (SHS) of a three-layer “sandwich” sample. The layers are formed from gasless mixtures with the addition of an inert fusible component. The mathematical model is studied numerically using the finite-difference method. The unsteady periodic regimes of gasless combustion of the three-layer sample with square cross-section are revealed with account for melting and thermocapillary flow of the melted inert component of the mixture. The unsteady periodic combustion regimes are specified depending on the relative calorific value of the mixture in the inner layer. High-temperature points move along the side faces of the sample. The velocity of the points' motion along the combustion surface is much higher than the average burning velocity of the sample. An increase in the melt flow velocity leads to the equalization of the temperature field and stabilization of the combustion regime. The quasi-stationary regimes of control and fusion are studied during the combustion of the sample with an active inner layer, when the intrinsic burning velocities of the donor and acceptor mixtures are close to each other.
Keywords: SHS, melting, thermocapillary flow, donor and acceptor mixtures.
@article{VTGU_2022_80_a9,
     author = {V. G. Prokof'ev},
     title = {Periodic combustion regimes for thermally coupled {SHS} systems with a thermocapillary melt flow},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {108--116},
     year = {2022},
     number = {80},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a9/}
}
TY  - JOUR
AU  - V. G. Prokof'ev
TI  - Periodic combustion regimes for thermally coupled SHS systems with a thermocapillary melt flow
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 108
EP  - 116
IS  - 80
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a9/
LA  - ru
ID  - VTGU_2022_80_a9
ER  - 
%0 Journal Article
%A V. G. Prokof'ev
%T Periodic combustion regimes for thermally coupled SHS systems with a thermocapillary melt flow
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 108-116
%N 80
%U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a9/
%G ru
%F VTGU_2022_80_a9
V. G. Prokof'ev. Periodic combustion regimes for thermally coupled SHS systems with a thermocapillary melt flow. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 108-116. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a9/

[1] Merzhanov A. G., “Termicheski sopryazhennye protsessy samorasprostranyayuschegosya vysoko temperaturnogo sinteza”, Doklady RAN, 434:4 (2010), 489–492

[2] Linde A. V., Studenikin I. A., Kondakov A. A., Grachev V. V., “Thermally coupled SHS processes in layered (Fe2O3 + 2Al)/(Ti + Al)/(Fe2O3 + 2Al) structures: An experimental study”, Combustion and Flame, 208 (2019), 364–368 | DOI

[3] Sytschev A. E., Vrel D., Boyarchenko O. D., Roshchupkin D. V., Sachkov N. V., “Combustion syn thesis in bi-layered (Ti-Al)/(Ni-Al) system”, Journal of Materials Processing Technology, 240 (2017), 60–67 | DOI

[4] Prokofev V. G., Lapshin O. V., Smolyakov V. K., “Makrokinetika goreniya sloevykh kompozitsii s legkoplavkim inertnym sloem”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 52, 102–113 | DOI

[5] Maksimov Yu. M., Pak A. T., Lavrenchuk G. V., Naiborodenko Yu. S., Merzhanov A. G., “Spinovoe gorenie bezgazovykh sistem”, Fizika goreniya i vzryva, 15:3 (1979), 156159

[6] Maksimov Yu. M., Merzhanov A. G., Pak A. T., Kuchkin M. N., “Rezhimy neustoichivogo goreniya bezgazovykh sistem”, Fizika goreniya i vzryva, 17:4 (1981), 51–58

[7] Ivleva T. P., Merzhanov A. G., “Matematicheskoe modelirovanie trekhmernykh spinovykh rezhimov bezgazovogo goreniya”, Fizika goreniya i vzryva, 38:1 (2002), 47–54 | DOI | MR

[8] Prokofev V. G., Smolyakov V. K., “Vliyanie fazovogo perekhoda na trekhmernye neustoichivye rezhimy bezgazovogo goreniya”, Fizika goreniya i vzryva, 52:3 (2016), 65–71 | DOI

[9] Prokof'ev V.G., “Unsteady Combustion Modes in Rectangular Rods”, Int. Journal Self-Propag. High-Temp. Synth., 28:3 (2019), 155–158 | DOI

[10] Prokofev V. G., Smolyakov V. K., “Rezhimy goreniya bezgazovykh sistem s plavyaschimsya komponentom v oblasti silnoi neustoichivosti”, Inzhenerno-fizicheskii zhurnal, 92:3 (2019), 706–710

[11] Kurdyumov V. N., Gubernov V. V., “Combustion waves in narrow samples of solid energetic material: chaotic versus spinning dynamics”, Combustion and Flame, 229 (2021) | DOI

[12] Miroshnichenko T. P., Yakupov E. O., Gubernov V. V., Kurdyumov V. N., Polezhaev A. A., “Combustion wave in a two-layer solid fuel system”, Applied Mathematical Modelling, 77 (2020), 1082–1094 | DOI | MR

[13] Nersisyan H. H., Joo S. H., Yoo B. U., Cho Y. H., Kim H. M., Lee J.-H., “Melt-assisted solid flame synthesis approach to amorphous boron nanoparticles”, Combustion and Flame, 162 (2015), 3316–3323 | DOI

[14] Yeh C. L., Chen Y. C., “Effects of PTFE activation and carbon sources on combustion synthesis of Cr2AlC/Al2O3 composites”, Ceramics International, 44 (2018), 384–389 | DOI

[15] Feng P., Liu W., Farid A., Wua J., Niu J., Wang X., Qiang Y., “Combustion synthesis of (Mo1-xCrx)Si2 (x = 0.00–0.30) alloys in SHS mode”, Advanced Powder Technology, 23 (2012), 133–138 | DOI

[16] Yeh C. L., Wang H. J., “Combustion synthesis of vanadium borides”, Journal of Alloys and Compounds, 509 (2011), 3257–3261 | DOI