@article{VTGU_2022_80_a6,
author = {A. S. Grigoriev and A. I. Dmitriev and E. V. Shil'ko},
title = {Evaluation of local mechanical properties of {SiO}$_{2}$-based ceramic refractories using microscale modeling},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {73--84},
year = {2022},
number = {80},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a6/}
}
TY - JOUR
AU - A. S. Grigoriev
AU - A. I. Dmitriev
AU - E. V. Shil'ko
TI - Evaluation of local mechanical properties of SiO$_{2}$-based ceramic refractories using microscale modeling
JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY - 2022
SP - 73
EP - 84
IS - 80
UR - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a6/
LA - ru
ID - VTGU_2022_80_a6
ER -
%0 Journal Article
%A A. S. Grigoriev
%A A. I. Dmitriev
%A E. V. Shil'ko
%T Evaluation of local mechanical properties of SiO$_{2}$-based ceramic refractories using microscale modeling
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 73-84
%N 80
%U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a6/
%G ru
%F VTGU_2022_80_a6
A. S. Grigoriev; A. I. Dmitriev; E. V. Shil'ko. Evaluation of local mechanical properties of SiO$_{2}$-based ceramic refractories using microscale modeling. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 73-84. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a6/
[1] Schacht C., Refractory Linings: Thermomechanical Design and Applications, CRC Press, Boca Raton, FL, 2019, 504 pp.
[2] Andreev K., Tadaion V., Zhu Q., Wang W., Yin Y., Tonnesen T., “Thermal and mechanical cyclic tests and fracture mechanics parameters as indicators of thermal shock resistance - case study on silica refractories”, J. Eur. Cer. Soc., 39 (2019), 1650–1659 | DOI
[3] Kascheev I. D., Strelov K. K., Mamykin P. S., Khimicheskaya tekhnologiya ogneuporov. M.: Intermet Inzhiniring, 2007, 748 pp.
[4] Andreev K., Yin Y., Luchini B., Sabirov I., “Failure of refractory masonry material under monotonic and cyclic loading - Crack propagation analysis”, Constr. Build. Mater., 299 (2021), 124203 | DOI
[5] Ozdemir I., Brekelmans W. A.M., Geers M. G.D., “Modeling thermal shock damage in refractory materials via direct numerical simulation (DNS)”, j. Eur. Ceram. Soc., 30 (2010), 15851597 pp. | DOI
[6] Savija B., Smith G. E., Liu D., Schlangen E., Flewitt P. E.J., “Modelling of deformation and fracture for a model quasi-brittle material with controlled porosity: Synthetic versus real microstructure”, Eng. Fract. Mech., 205 (2019), 399–417 | DOI
[7] Andre D., Levraut B., Tessier-Doyen N., Huger M., “A discrete element thermo-mechanical modelling of diffuse damage induced by thermal expansion mismatch of two-phase materials”, Comput. Methods Appl. Mech. Engrg., 318 (2017), 898–916 | DOI | MR
[8] Andreev K., Verstrynge E., Wevers M., “Compaction and shear failure of refractory mortars effects of porosity and binder hardening”, j. Eur. Ceram. Soc., 37 (2017), 841–848 | DOI
[9] Makarian K., Santhanam S., “Micromechanical modeling of thermo-mechanical properties of high volume fraction particle-reinforced refractory composites using 3D Finite Element analysis”, Ceram. Int., 46 (2020), 4381–4393 | DOI
[10] Henneberg D., Ricoeur A., Judt P., “Multiscale modeling for the simulation of damage processes at refractory materials under thermal shock”, Comput. Mater. Sci., 70 (2013), 187–195 | DOI
[11] Nguyen T. T., Andre D., Huger M., “Analytical laws for direct calibration of discrete element modelling of brittle elastic media using cohesive beam model”, Comput. Part. Mech., 6 (2019), 393–409 | DOI
[12] Moreira M. H., Cunha T. M., Campos M. G.G., Santos M. F., Santos Jr. T., Andre D., Pandolfelli V. C., “Discrete element modeling - A promising method for refractory microstructure design”, Am. Ceram. Soc. Bull., 99:2 (2020), 22–28
[13] Grigoriev A. S., Zabolotskiy A. V., Shilko E. V., Dmitriev A. I., Andreev K., “Analysis of the QuasiStatic and Dynamic Fracture of the Silica Refractory Using the Mesoscale Discrete Element Modelling”, Materials, 14 (2021), 7376 | DOI
[14] Psakhie S. G., Shilko E. V., Grigoriev A. S., Astafurov S. V., Dimaki A. V., Smolin A.Yu., “A mathematical model of particle-particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic-plastic materials”, Eng. Fract. Mech., 130 (2014), 96–115 | DOI
[15] Smolin A.Yu., Roman N. V., Konovalenko I. S., Eremina G. M., Buyakova S. P., Psakhie S. G., “3D simulation of dependence of mechanical properties of porous ceramics on porosity”, Eng. Fract. Mech., 130 (2014), 53–64 | DOI
[16] Pubst W., Uhlirova T., Gregorova E., Wiegmann A., “Young's modulus and thermal conductivity of model materials with convex or concave pores - from analytical predictions to numerical results”, j. Eur. Cer. Soc., 38 (2018), 2694–2707 | DOI
[17] Roberts A. P., Garboczi E. J., “Elastic properties of model porous ceramics”, j. Am. Ceram. Soc., 83 (2000), 3041–3048 | DOI