Evaluation of local mechanical properties of SiO$_{2}$-based ceramic refractories using microscale modeling
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 73-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The development of multiscale mechanical models of promising refractory materials is an urgent problem in the mechanics of solids. One of the reasons is the applicability of these models when creating digital twins of advanced refractories. The authors of this paper recently developed and validated a mesoscopic model of the SiO$_2$-based refractory material that is widely used in metallurgy. This model takes into account the characteristic structural features of SiO$_2$ refractory in the scale range of 10$^{-5}$–10$^{-2}$ m and the mechanical behavior features in a wide range of strain rates. However, the full use of the model requires knowledge of local mechanical properties of mesoscopic structural elements, in particular, the highly porous regions, which are formed by fine grains less than 10$^{2}$ pm in size. An experimental study of effective mechanical characteristics of such regions is an extremely difficult task. Therefore, the purpose of this work is to obtain the theoretical estimate using the microscale numerical simulation of highly porous regions of SiO$_{2}$ refractory material and to determine their integral mechanical characteristics. To study this problem, the two-dimensional model samples are developed that simulate fine-grained regions of the refractory and are characterized by different porosity and pore structure types (channel-like or closed type). The intervals of the variation of Young's modulus and strength characteristics of the samples are obtained depending on the porosity and morphology of the pore space. The contribution of the closed-type porosity to the integral mechanical characteristics of the refractory is determined; though, the volume fraction of such pores is low as compared to that of the channel-like pores. The obtained data will be used as input parameters of mesoscale refractory models for solving the urgent problems related to the study of the effect of microstructure parameters on the macroscopic mechanical and thermomechanical properties of SiO$_2$-based refractories.
Keywords: SiO$_2$-based refractory materials, porosity, strength, numerical modeling, discrete element method.
@article{VTGU_2022_80_a6,
     author = {A. S. Grigoriev and A. I. Dmitriev and E. V. Shil'ko},
     title = {Evaluation of local mechanical properties of {SiO}$_{2}$-based ceramic refractories using microscale modeling},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {73--84},
     year = {2022},
     number = {80},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a6/}
}
TY  - JOUR
AU  - A. S. Grigoriev
AU  - A. I. Dmitriev
AU  - E. V. Shil'ko
TI  - Evaluation of local mechanical properties of SiO$_{2}$-based ceramic refractories using microscale modeling
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 73
EP  - 84
IS  - 80
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a6/
LA  - ru
ID  - VTGU_2022_80_a6
ER  - 
%0 Journal Article
%A A. S. Grigoriev
%A A. I. Dmitriev
%A E. V. Shil'ko
%T Evaluation of local mechanical properties of SiO$_{2}$-based ceramic refractories using microscale modeling
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 73-84
%N 80
%U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a6/
%G ru
%F VTGU_2022_80_a6
A. S. Grigoriev; A. I. Dmitriev; E. V. Shil'ko. Evaluation of local mechanical properties of SiO$_{2}$-based ceramic refractories using microscale modeling. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 73-84. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a6/

[1] Schacht C., Refractory Linings: Thermomechanical Design and Applications, CRC Press, Boca Raton, FL, 2019, 504 pp.

[2] Andreev K., Tadaion V., Zhu Q., Wang W., Yin Y., Tonnesen T., “Thermal and mechanical cyclic tests and fracture mechanics parameters as indicators of thermal shock resistance - case study on silica refractories”, J. Eur. Cer. Soc., 39 (2019), 1650–1659 | DOI

[3] Kascheev I. D., Strelov K. K., Mamykin P. S., Khimicheskaya tekhnologiya ogneuporov. M.: Intermet Inzhiniring, 2007, 748 pp.

[4] Andreev K., Yin Y., Luchini B., Sabirov I., “Failure of refractory masonry material under monotonic and cyclic loading - Crack propagation analysis”, Constr. Build. Mater., 299 (2021), 124203 | DOI

[5] Ozdemir I., Brekelmans W. A.M., Geers M. G.D., “Modeling thermal shock damage in refractory materials via direct numerical simulation (DNS)”, j. Eur. Ceram. Soc., 30 (2010), 15851597 pp. | DOI

[6] Savija B., Smith G. E., Liu D., Schlangen E., Flewitt P. E.J., “Modelling of deformation and fracture for a model quasi-brittle material with controlled porosity: Synthetic versus real microstructure”, Eng. Fract. Mech., 205 (2019), 399–417 | DOI

[7] Andre D., Levraut B., Tessier-Doyen N., Huger M., “A discrete element thermo-mechanical modelling of diffuse damage induced by thermal expansion mismatch of two-phase materials”, Comput. Methods Appl. Mech. Engrg., 318 (2017), 898–916 | DOI | MR

[8] Andreev K., Verstrynge E., Wevers M., “Compaction and shear failure of refractory mortars effects of porosity and binder hardening”, j. Eur. Ceram. Soc., 37 (2017), 841–848 | DOI

[9] Makarian K., Santhanam S., “Micromechanical modeling of thermo-mechanical properties of high volume fraction particle-reinforced refractory composites using 3D Finite Element analysis”, Ceram. Int., 46 (2020), 4381–4393 | DOI

[10] Henneberg D., Ricoeur A., Judt P., “Multiscale modeling for the simulation of damage processes at refractory materials under thermal shock”, Comput. Mater. Sci., 70 (2013), 187–195 | DOI

[11] Nguyen T. T., Andre D., Huger M., “Analytical laws for direct calibration of discrete element modelling of brittle elastic media using cohesive beam model”, Comput. Part. Mech., 6 (2019), 393–409 | DOI

[12] Moreira M. H., Cunha T. M., Campos M. G.G., Santos M. F., Santos Jr. T., Andre D., Pandolfelli V. C., “Discrete element modeling - A promising method for refractory microstructure design”, Am. Ceram. Soc. Bull., 99:2 (2020), 22–28

[13] Grigoriev A. S., Zabolotskiy A. V., Shilko E. V., Dmitriev A. I., Andreev K., “Analysis of the QuasiStatic and Dynamic Fracture of the Silica Refractory Using the Mesoscale Discrete Element Modelling”, Materials, 14 (2021), 7376 | DOI

[14] Psakhie S. G., Shilko E. V., Grigoriev A. S., Astafurov S. V., Dimaki A. V., Smolin A.Yu., “A mathematical model of particle-particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic-plastic materials”, Eng. Fract. Mech., 130 (2014), 96–115 | DOI

[15] Smolin A.Yu., Roman N. V., Konovalenko I. S., Eremina G. M., Buyakova S. P., Psakhie S. G., “3D simulation of dependence of mechanical properties of porous ceramics on porosity”, Eng. Fract. Mech., 130 (2014), 53–64 | DOI

[16] Pubst W., Uhlirova T., Gregorova E., Wiegmann A., “Young's modulus and thermal conductivity of model materials with convex or concave pores - from analytical predictions to numerical results”, j. Eur. Cer. Soc., 38 (2018), 2694–2707 | DOI

[17] Roberts A. P., Garboczi E. J., “Elastic properties of model porous ceramics”, j. Am. Ceram. Soc., 83 (2000), 3041–3048 | DOI