@article{VTGU_2022_80_a4,
author = {M. A. Bubenchikov and D. V. Mamontov and S. A. Azheev and A. A. Azheev},
title = {Rotation of supermolecules around an intermediate axis of inertia},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {49--58},
year = {2022},
number = {80},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a4/}
}
TY - JOUR AU - M. A. Bubenchikov AU - D. V. Mamontov AU - S. A. Azheev AU - A. A. Azheev TI - Rotation of supermolecules around an intermediate axis of inertia JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 49 EP - 58 IS - 80 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a4/ LA - ru ID - VTGU_2022_80_a4 ER -
%0 Journal Article %A M. A. Bubenchikov %A D. V. Mamontov %A S. A. Azheev %A A. A. Azheev %T Rotation of supermolecules around an intermediate axis of inertia %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 49-58 %N 80 %U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a4/ %G ru %F VTGU_2022_80_a4
M. A. Bubenchikov; D. V. Mamontov; S. A. Azheev; A. A. Azheev. Rotation of supermolecules around an intermediate axis of inertia. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 49-58. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a4/
[1] Goldstein H., Classical Mechanics, 2nd ed., Addison-Wesle, USA, 1980, 638 pp. | MR
[2] Bubenchikov M. A., Bubenchikov A. M., Mamontov D. V., “Vrascheniya i vibratsii torov v mole kulyarnom komplekse C20@C80”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 71, 35–48 | DOI | MR
[3] Bubenchikov M. A., Bubenchikov A. M., Mamontov D. V., Kaparulin D. S., Lun-Fu A. V., “Vraschenie torov v strukture zhidkogo kristalla”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 73, 42–49 | DOI
[4] Bubenchikov A. M., Bubenchikov M. A., Mamontov D. V., Kaparulin D. S., Lun-Fu A. V., “Dynamic state of columnar structures formed on the basis of carbon nanotori”, Fullerenes, Nanotubes and Carbon Nanostructures, 29:10 (2021), 1–7 | DOI
[5] Lun-Fu A.V., Bubenchikov M. A., Bubenchikov A. M., Mamontov D. V., Borodin V. A., “Interaction of molecular tori in columnar structures”, Journal of Physics: Condensed Matter, 34:12 (2021) | DOI
[6] Hamilton R. W., “On quaternions; or on a new system of imaginaries in Algebra”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25(169) (1844), 489–495 | DOI
[7] Denis J. E., Sohail M., “Singularity free algorithm for molecular dynamics simulation of rigid poly atomics”, Molecular Physics, 34:2 (1977), 327–331 | DOI
[8] Pawley G. S., “Molecular dynamics simulation of the plastic phase; a model for SF6”, Molecular Physics, 43:6 (1981), 1321–1330 | DOI
[9] Karney Ch., “Quaternions in molecular modeling”, Journal of Molecular Graphics Modelling, 25 (2007), 595–604 | DOI
[10] Miller T. F. III, Eleftheriou M., Pattnaik P., Ndirango A., Newns D., “Symplectic quaternion scheme for biophysical molecular dynamics”, The Journal of Chemical Physics, 116:20 (2002), 8649–8659 | DOI
[11] Chen P-c., Hologne M., Walker O., “Computing the Rotational Diffusion of Biomolecules via Molecular Dynamics Simulation and Quaternion Orientations”, The Journal of Physical Chemistry B, 121:8 (2017), 1812–1823 | DOI