Simulation of the interaction of conical impactors having an angle of attack with underwater barriers
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 39-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the effect of the angle of impact and the angle of attack on the interaction between truncated coneshaped impactors made of BHZh-95 alloy and underwater barriers made of aluminum alloy is studied using experimental and computational methods. When such an impactor enters water, a supercavern appears around the impactor and minimizes the fluid friction. During the motion, the impactor afterbody periodically experiences impermanent contact with the walls of the supercavern, which maintains the steady motion. Note that the center of mass of the impactor is located closer to its afterbody, which can induce the angle of attack appearance during the motion. The experimental study is conducted using a hydroballistic track with high-speed video recording. The speed range of $250$$350$ m/s is considered. Mathematical modeling is carried out using the EFES original software package. It is revealed that a positive angle of attack $\beta \le 10^{\circ}$ leads to the normalization of the impactor and a decrease in the effective thickness of the barrier with its perforation. In contrast, at a negative angle of attack, the impactor rebounds from the barrier.
Keywords: conical impactor, high-speed interaction, model, deformation, impact, rebound, angle of attack.
@article{VTGU_2022_80_a3,
     author = {S. P. Batuev and A. S. D'yachkovskiy and P. A. Radchenko and A. V. Radchenko and A. Yu. Sammel and A. V. Chupashev},
     title = {Simulation of the interaction of conical impactors having an angle of attack with underwater barriers},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {39--48},
     year = {2022},
     number = {80},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a3/}
}
TY  - JOUR
AU  - S. P. Batuev
AU  - A. S. D'yachkovskiy
AU  - P. A. Radchenko
AU  - A. V. Radchenko
AU  - A. Yu. Sammel
AU  - A. V. Chupashev
TI  - Simulation of the interaction of conical impactors having an angle of attack with underwater barriers
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 39
EP  - 48
IS  - 80
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a3/
LA  - ru
ID  - VTGU_2022_80_a3
ER  - 
%0 Journal Article
%A S. P. Batuev
%A A. S. D'yachkovskiy
%A P. A. Radchenko
%A A. V. Radchenko
%A A. Yu. Sammel
%A A. V. Chupashev
%T Simulation of the interaction of conical impactors having an angle of attack with underwater barriers
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 39-48
%N 80
%U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a3/
%G ru
%F VTGU_2022_80_a3
S. P. Batuev; A. S. D'yachkovskiy; P. A. Radchenko; A. V. Radchenko; A. Yu. Sammel; A. V. Chupashev. Simulation of the interaction of conical impactors having an angle of attack with underwater barriers. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 39-48. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a3/

[1] Logvinovich G. V., Nekotorye voprosy glissirovaniya i kavitatsii, Trudy TsAGI, 2052, 1980, 271 pp.

[2] Savchenko Yu. N., Semenenko V. N., Putilin S. I., “Nestatsionarnye protsessy pri superkavitatsionnom dvizhenii tel”, Prikladnaya gidromekhanika, 73:1 (1999), 79–97

[3] Fedorov S. V., Veldanov V. A., “K opredeleniyu razmerov kavitatsionnoi polosti v vode za dvizhuschimsya s vysokoi skorostyu tsilindricheskim telom”, Zhurnal tekhnicheskoi fiziki, 83:2 (2013), 15–20 https://journals.ioffe.ru/articles/10815

[4] Fomin N. A., “Diagnostika bystroprotekayuschikh protsessov v mekhanike zhidkosti, gaza i plazmy”, Inzhenerno-fizicheskii zhurnal, 81:1 (2008), 68–80 | MR

[5] Dobroselskii K. G., “Primenenie piv metoda dlya issledovaniya techeniya vblizi poperechno obtekaemogo tsilindra”, Inzhenerno-fizicheskii zhurnal, 89:3 (2016), 687–693

[6] Logvinovich G. V., “Gidrodinamika tonkogo gibkogo tela (otsenka gidrodinamiki ryb)”, Uchenye zapiski TsAGI, 1:2 (1970), 11–17

[7] Afanaseva S. A., Bondarchuk I. S., Burkin V. V., Dyachkovskii A. S., Ischenko A. N., Rogaev K. S., Sammel A. Yu., Sidorov A. D., Stepanov E. Yu., Chupashev A. V., “Eksperimentalno-teoreticheskie issledovaniya osobennostei vysokoskorostnogo dvizheniya v vode superkavitiruyuschikh udarnikov, izgotovlennykh iz raznykh materialov”, Inzhenerno-fizicheskii zhurnal, 94:6 (2021), 1528–1537

[8] Byoung-Kwon Ahn, Tae-Kwon Lee, Hyoung-Tae Kim, Chang-Sup Lee, “Experimental investigation of supercavitating flows”, Int. J. Nav. Archit. Ocean Eng., 4 (2012), 123–131 | DOI

[9] Sedov L. I., Ploskie zadachi gidrodinamiki i aerodinamiki, Gostekhizdat, M.–L., 1951, 444 pp. | MR

[10] Savchenko Yu. N., “Modelirovanie superkavitatsionnykh protsessov”, Prikladna gidromekhanika, 2000, no. 2 (74), 75–86 | MR

[11] Shakhtin A. A., “Chislennyi metod rascheta superkavern”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 2 (22), 105–109

[12] Gerasimov A. V., “Chislennoe modelirovanie vysokoskorostnogo vzaimodeistviya udarnikov s pregradami konechnoi tolschiny: rikoshet, vnedrenie, probitie”, Izvestiya Altaiskogo gosudarstvennogo universiteta, 2014, no. 1–1 (81), 140–143

[13] Bivin Yu. K., “Pronikanie, probivanie, rikoshet”, Aktualnye problemy mekhaniki, 50 let Institutu problem mekhaniki im. A.Yu. Ishlinskogo RAN, In-t problem mekhaniki im. A.Yu. Ishlinskogo RAN, Nauka, M., 2015, 406–425

[14] Radchenko P. A., Batuev S. P., Radchenko A. V., Trekhmernoe modelirovanie deformatsii i razrusheniya geterogennykh materialov i konstruktsii pri dinamicheskikh nagruzkakh (EFES 2.0), Gosudarstvennaya registratsiya programmy dlya EVM No 2019664836, 2019

[15] Burkin V. V., Ischenko A. N., Maistrenko I. V., Fufachev V. M., Dyachkovskii A. S., Burakov V. A., Korolkov L. V., Stepanov E. Yu., Chupashev A. V., Rogaev K. S., Sammel A. Yu., Sidorov A. D., Gidroballisticheskii stend, zayav. 09.10.2017, Patent 2683148 RF, opubl. 26.03.2019

[16] Radchenko P. A., Radchenko A. V., Batuev S. P., “Effect of Projectile Rotation on High-Velocity Impact Fracture”, Physical Mesomechanics, 25 (2022), 119–228 | DOI