On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 16-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A priori estimates are established for solutions of one-dimensional inhomogeneous hyperbolic equations with an integral load in the main part, which has the form $a(s) = s^{p}$, for $p = 1$, $0.5$ and $-1$, with inhomogeneous initial and homogeneous boundary conditions. Here $s$ is the integral over the space variable of the square of the modulus of the derivative of the solution of the equation with respect to $x$. Examples of linearization of loaded equations by substituting the right-hand sides of the estimates for $a(s)$ are given.
Keywords: hyperbolic equation, integral load, linearization.
Mots-clés : a priori estimation
@article{VTGU_2022_80_a1,
     author = {O. L. Boziev},
     title = {On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--25},
     year = {2022},
     number = {80},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a1/}
}
TY  - JOUR
AU  - O. L. Boziev
TI  - On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 16
EP  - 25
IS  - 80
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a1/
LA  - ru
ID  - VTGU_2022_80_a1
ER  - 
%0 Journal Article
%A O. L. Boziev
%T On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 16-25
%N 80
%U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a1/
%G ru
%F VTGU_2022_80_a1
O. L. Boziev. On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 16-25. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a1/

[1] Bernshtein S. N., “Ob odnom klasse funktsionalnykh uravnenii s chastnymi proizvod nymi”, Izvestiya AN SSSR. Ser. matematicheskaya, 1940, no. 1, 17–26

[2] Woinowsky-Krieger S., “The effect of axial forces on the vibrations of hinged bars”, j. Appl. Mech., 1950, no. 17, 35–36 | DOI | MR

[3] Dickey R. W., “Infinite systems of nonlinear oscillation equations related to the string”, Proc. Amer. Math. Soc., 1969, no. 23, 459–468 | DOI | MR

[4] Crippa H. R., “On local solutions of some mildly degenerate Hyperbolic equations”, Nonlinear Analysis: Theory, Methods Applications, 21:8 (1993), 565–574 | DOI | MR

[5] Frota C. L., Medeiros L. A., Vicente A., “Wave equation in domains with nonlocally reacting boundary”, Differential and Integral Equations, 24:11/12 (2011), 1001–1020 | MR

[6] Pokhozhaev S. I., “Ob odnom klasse kvazilineinykh giperbolicheskikh uravnenii”, Matematichseskii sbornik, 96(138):1 (1975), 152–166

[7] Pokhozhaev S. I., “Ob odnom kvazilineinom giperbolicheskom uravnenii Kirkhgofa”, Differentsialnye uravneniya, 21:1 (1985), 101–108 | MR

[8] Nishihara K., “Exponential decay of solutions of some quasilinear hyperbolic equations with linear damping”, Nonlinear Analysis: Theory, Methods Applications, 8:6 (1984), 623–636 | DOI | MR

[9] Ngoc L. T.P., Long N. T., “Linear Approximation and Asymptotic Expansion of Solutions in Many Small Parameters for a Nonlinear Kirchhoff Wave Equation with Mixed Nonhomogeneous Conditions”, Acta Appl Math., 112 (2010), 137–169 | DOI | MR

[10] Ono K., “Global solvability for mildly degenerate Kirchhoff type dissipative wave equations in Bounded Domains”, j. Math. Tokushima Univ., 55 (2021), 11–18 | MR

[11] Boziev O. L., “Priblizhennoe reshenie nagruzhennogo giperbolicheskogo uravneniya s odnorodnymi kraevymi usloviyami”, Vestnik Yuzhnouralskogo gosudarstvennogo universiteta. Ser. Matematika, fizika, mekhanika, 8:2 (2016), 14–18 | DOI

[12] Boziev O. L., “Reshenie nelineinogo giperbolicheskogo uravneniya priblizhenno-analiticheskim metodom”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 51, 5–14 | DOI | MR

[13] Filatov A. N., Sharova L. V., Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976, 151 pp.