Mots-clés : a priori estimation
@article{VTGU_2022_80_a1,
author = {O. L. Boziev},
title = {On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {16--25},
year = {2022},
number = {80},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a1/}
}
TY - JOUR AU - O. L. Boziev TI - On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 16 EP - 25 IS - 80 UR - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a1/ LA - ru ID - VTGU_2022_80_a1 ER -
%0 Journal Article %A O. L. Boziev %T On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 16-25 %N 80 %U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a1/ %G ru %F VTGU_2022_80_a1
O. L. Boziev. On linearization of hyperbolic equations with integral load in the main part using an a priori estimate of their solutions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 16-25. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a1/
[1] Bernshtein S. N., “Ob odnom klasse funktsionalnykh uravnenii s chastnymi proizvod nymi”, Izvestiya AN SSSR. Ser. matematicheskaya, 1940, no. 1, 17–26
[2] Woinowsky-Krieger S., “The effect of axial forces on the vibrations of hinged bars”, j. Appl. Mech., 1950, no. 17, 35–36 | DOI | MR
[3] Dickey R. W., “Infinite systems of nonlinear oscillation equations related to the string”, Proc. Amer. Math. Soc., 1969, no. 23, 459–468 | DOI | MR
[4] Crippa H. R., “On local solutions of some mildly degenerate Hyperbolic equations”, Nonlinear Analysis: Theory, Methods Applications, 21:8 (1993), 565–574 | DOI | MR
[5] Frota C. L., Medeiros L. A., Vicente A., “Wave equation in domains with nonlocally reacting boundary”, Differential and Integral Equations, 24:11/12 (2011), 1001–1020 | MR
[6] Pokhozhaev S. I., “Ob odnom klasse kvazilineinykh giperbolicheskikh uravnenii”, Matematichseskii sbornik, 96(138):1 (1975), 152–166
[7] Pokhozhaev S. I., “Ob odnom kvazilineinom giperbolicheskom uravnenii Kirkhgofa”, Differentsialnye uravneniya, 21:1 (1985), 101–108 | MR
[8] Nishihara K., “Exponential decay of solutions of some quasilinear hyperbolic equations with linear damping”, Nonlinear Analysis: Theory, Methods Applications, 8:6 (1984), 623–636 | DOI | MR
[9] Ngoc L. T.P., Long N. T., “Linear Approximation and Asymptotic Expansion of Solutions in Many Small Parameters for a Nonlinear Kirchhoff Wave Equation with Mixed Nonhomogeneous Conditions”, Acta Appl Math., 112 (2010), 137–169 | DOI | MR
[10] Ono K., “Global solvability for mildly degenerate Kirchhoff type dissipative wave equations in Bounded Domains”, j. Math. Tokushima Univ., 55 (2021), 11–18 | MR
[11] Boziev O. L., “Priblizhennoe reshenie nagruzhennogo giperbolicheskogo uravneniya s odnorodnymi kraevymi usloviyami”, Vestnik Yuzhnouralskogo gosudarstvennogo universiteta. Ser. Matematika, fizika, mekhanika, 8:2 (2016), 14–18 | DOI
[12] Boziev O. L., “Reshenie nelineinogo giperbolicheskogo uravneniya priblizhenno-analiticheskim metodom”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 51, 5–14 | DOI | MR
[13] Filatov A. N., Sharova L. V., Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976, 151 pp.