On an additive modification of the $\gamma$-property
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For Tikhonov spaces, a sequence $(\gamma'_{k})_{k<\omega}$ of topological properties is defined, each of which is not stronger than the classical Gerlich–Nagy property ($\gamma$-property), and $\gamma'_{k +1}$ follows from $\gamma'_{k}$. The behavior of the index k under standard topological operations is studied. As one of the main results, it was established that, in contrast to the $\gamma$-property, taking a topological sum does not take the sequence $(\gamma'_{k})_{k<\omega}$ outside the sequence, but only leads to addition indices. In addition, the connection of the sequence $(\gamma'_{k})_{k<\omega}$ with the Lindelof property was found, as well as some other facts.
Keywords: $\omega$-cover, $\gamma$-property, Gerlits–Nagy property, $\gamma'_{k}$ -property, Lindelöf property.
@article{VTGU_2021_74_a0,
     author = {O. O. Badmaev},
     title = {On an additive modification of the $\gamma$-property},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--11},
     year = {2021},
     number = {74},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_74_a0/}
}
TY  - JOUR
AU  - O. O. Badmaev
TI  - On an additive modification of the $\gamma$-property
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 5
EP  - 11
IS  - 74
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_74_a0/
LA  - ru
ID  - VTGU_2021_74_a0
ER  - 
%0 Journal Article
%A O. O. Badmaev
%T On an additive modification of the $\gamma$-property
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 5-11
%N 74
%U http://geodesic.mathdoc.fr/item/VTGU_2021_74_a0/
%G ru
%F VTGU_2021_74_a0
O. O. Badmaev. On an additive modification of the $\gamma$-property. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 74 (2021), pp. 5-11. http://geodesic.mathdoc.fr/item/VTGU_2021_74_a0/

[1] Gerlits J., Nagy Zs., “Some properties of C(X), I”, Topology and its Applications, 14:2 (1982), 151–161 | DOI | MR | Zbl

[2] Arkhangelskii A.V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989

[3] Tkachuk V.V., A Cp-Theory Problem Book Topological and Function Spaces, Springer, 2010 | MR

[4] Galvin F., Miller A.W., “u-sets and other singular sets of real numbers”, Topology and its Applications, 17:2 (1984), 145–155 | DOI | MR | Zbl

[5] Sakai M., “The Pytkeev property and the Rezhichecnko property in function spaces”, Note Mat., 22 (2003), 43–52 | MR | Zbl

[6] Sakai M., “Property C" and function spaces”, Proc Amer. Math. Soc., 104 (1998), 917–919 | MR

[7] May N., Spadaro S., Szeptycki P., “A new class of spaces with all finite powers Lindelof”, Topology and its Applications, 170 (2014), 104–118 | DOI | MR | Zbl

[8] Just W., Miller A.W., Scheepers M., Szeptycki P.J., “The combinatorics of open covers II”, Topology and its Applications, 73:3 (1996), 241–266 | DOI | MR | Zbl