Modeling the accumulation of damages and the failure of ceramic composites Al$_{2}$O$_{3}$-ZrO$_{2}$, obtained by additive technologies, under high-speed loading
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 72 (2021), pp. 140-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functional ceramic composite materials are widely used in industry due to their high strength, hardness, high operating temperature, and chemical inertness. Among the most famous types of functional ceramics are the ceramic composites based on the Al$_{2}$O$_{3}$-20%ZrO$_{2}$ system. In this work, the effect of the loading rate on the crack resistance is studied as well as the effect of the crack resistance of ceramic composites Al$_{2}$O$_{3}$-20%t-ZrO$_{2}$ with a mass content of submicron t-ZrO$_{2}$ particles on the high-speed compression of model specimens in shock waves and on the high-speed tension in the region of interaction of unloading waves. It is established that nonlinear effects of the mechanical behavior of ceramic composites ZrO$_{2}$-Al$_{2}$O$_{3}$ with a transformation-hardened matrix obtained by additive technologies are manifested at shock loading amplitudes close to or exceeding the Hugoniot elastic limit. Nonlinear effects under intense dynamic impacts on the considered composites are associated with the processes of self-organization of deformation regimes at a mesoscopic level, as well as with the occurrence of martensitic phase transformations in the matrix volumes, which are adjacent to strengthening particles. The modeling approach presented in this work can be used to determine the dynamic characteristics of ceramic composites up to shock loads of 1000 m/s.
Keywords: ceramic materials, structure of composite materials, additive technology, dynamic loading, transformation hardening.
@article{VTGU_2021_72_a11,
     author = {V. V. Promakhov and M. V. Korobenkov and N. A. Schultz and A. S. Zhukov and A. V. Olisov and V. R. Bakhmat and F. Yu. Dronov and I. S. Myalkovskiy},
     title = {Modeling the accumulation of damages and the failure of ceramic composites {Al}$_{2}${O}$_{3}${-ZrO}$_{2}$, obtained by additive technologies, under high-speed loading},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {140--157},
     year = {2021},
     number = {72},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_72_a11/}
}
TY  - JOUR
AU  - V. V. Promakhov
AU  - M. V. Korobenkov
AU  - N. A. Schultz
AU  - A. S. Zhukov
AU  - A. V. Olisov
AU  - V. R. Bakhmat
AU  - F. Yu. Dronov
AU  - I. S. Myalkovskiy
TI  - Modeling the accumulation of damages and the failure of ceramic composites Al$_{2}$O$_{3}$-ZrO$_{2}$, obtained by additive technologies, under high-speed loading
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 140
EP  - 157
IS  - 72
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_72_a11/
LA  - ru
ID  - VTGU_2021_72_a11
ER  - 
%0 Journal Article
%A V. V. Promakhov
%A M. V. Korobenkov
%A N. A. Schultz
%A A. S. Zhukov
%A A. V. Olisov
%A V. R. Bakhmat
%A F. Yu. Dronov
%A I. S. Myalkovskiy
%T Modeling the accumulation of damages and the failure of ceramic composites Al$_{2}$O$_{3}$-ZrO$_{2}$, obtained by additive technologies, under high-speed loading
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 140-157
%N 72
%U http://geodesic.mathdoc.fr/item/VTGU_2021_72_a11/
%G ru
%F VTGU_2021_72_a11
V. V. Promakhov; M. V. Korobenkov; N. A. Schultz; A. S. Zhukov; A. V. Olisov; V. R. Bakhmat; F. Yu. Dronov; I. S. Myalkovskiy. Modeling the accumulation of damages and the failure of ceramic composites Al$_{2}$O$_{3}$-ZrO$_{2}$, obtained by additive technologies, under high-speed loading. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 72 (2021), pp. 140-157. http://geodesic.mathdoc.fr/item/VTGU_2021_72_a11/

[1] Yin Q., Zhu B., Zeng H., Microstructure, Property and Processing of Functional Ceramics, Metallurgical Industry Press, and Springer, Shanghai, China, 2009

[2] Promakhov V.V., Zhukov I.A., Vorozhtsov S.A., Zhukov A.S., Vorozhtsov A.B., “Thermal shock-resistant ceramic composites based on zirconium dioxide”, Refractories and Industrial Ceramics, 56:6 (2016), 610–614 | DOI

[3] Korobenkov M.V., Kulkov S.N., “Structure and properties of ZTA composites for joint replacement”, AIP Conf. Proc., 1882 (2017), 020035 | DOI

[4] Evans A.G., Cannon R.M., “Overview no. 48: Toughening of brittle solids by martensitic transformations”, Acta Metall., 34:5 (1986), 761–800

[5] Hannink R.H.J., Kelly P.M., Muddle B.C., “Transformation toughening in zirconia-containing ceramics”, J. Am. Ceram. Soc., 83:3 (2000), 461–487 | DOI

[6] Promakhov V.V., Zhukov A.S., Vorozhtsov A.B., Shults N.A., Kovalchuk S.V., Kozhevnikov S.V., Olisov A.V., Klimenko V.A., “Osobennosti struktury i mekhanicheskikh svoistv keramiki, poluchennoi po additivnoi tekhnologii”, Izv. vuzov. Fizika, 62:5 (2019), 132–137 | DOI

[7] Diaz O.G., Luna G.G., Liao Z., Axinte D., “The new challenges of machining ceramic matrix composites (CMCs): Review of surface integrity”, Int. J. Mach. Tools Manuf., 139 (2019), 24–36 | DOI

[8] Promakhov V.V., Savinykh A.S., Dubkova Ya.A., Shults N.A., Zhukov A.S., Razorenov S.V., “Dinamicheskaya prochnost keramicheskikh materialov na osnove ZrO$_2$, poluchennykh po additivnoi tekhnologii”, Pisma v zhurnal tekhnicheskoi fiziki, 45:19 (2019), 28–32 | DOI

[9] Promakhov V., Zhukov A., Dubkova Y., Zhukov I., Kovalchuk S., Zhukova T., Olisov A., Klimenko V., Savkina N., “Structure and properties of ZrO$_2$-20%Al$_2$O$_3$ ceramic composites obtained using additive technologies”, Materials, 11 (2018), 2361 | DOI

[10] Cui H., Hensleigh R., Chen H., Zheng X., “Additive manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterial”, J. Mater. Res., 33 (2018), 350–371 | DOI

[11] Chen Z., Song X., Lei L., Chen X., Fei C., Chiu C.T., Qian X., Ma T., Yang Y., Shung K., et al., “3D printing of piezoelectric element for energy focusing and ultrasonic sensing”, Nano Energy, 27 (2016), 78–86 | DOI

[12] Babaee S., Shim J., Weaver J.C., Chen E.R., Patel N., Bertoldi K., “3D soft metamaterials with negative Poisson's ratio”, Adv. Mater., 25 (2013), 5044–5049 | DOI

[13] Cox S.C., Thornby J.A., Gibbons G.J., Williams M.A., Mallick K.K., “3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications”, Mater. Sci. Eng., 47 (2015), 237–247 | DOI

[14] Basu B., Vleugels J., Van Der Biest O., “Transformation behavior of tetragonal zirconia: role of dopant content and distribution”, Mater. Sci. and Eng. A, 366 (2004), 338–347 | DOI

[15] Skripnyak V., “Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation”, AIP Conf. Proc., 1426 (2012), 965–970 | DOI

[16] Tai Y.S., Tang C.C., “Numerical simulation: The dynamic behavior of reinforced concrete plates under normal impact”, Theor. Appl. Fract. Mec., 45:2 (2006), 117–127 | DOI

[17] Panteki E., Maca P., Haussler-Combe U., “Finite element analysis of dynamic concrete-to-rebar bond ex-periments in the push-in configuration”, Int. J. Impact. Eng., 106 (2017), 155–170 | DOI

[18] Potyondy D.O., Cundall P.A., “A bonded-particle model for rock”, Int. J Rock Mech Min Sci., 41 (2004), 1329–1364 | DOI

[19] Jing L., Stephansson O., Fundamentals of discrete element method for rock engineering: theory and applications, Elsevier, 2007, 562 pp.

[20] Kuznetsov V.P., Tarasov S.Yu., Dmitriev A.I., “Nano structuring burnishing and subsurface shear instability”, Journal of Materials Processing Technology, 217 (2015), 327–335 | DOI

[21] Goldshtein R.V., Osipenko N.M., “Model khrupkogo razrusheniya materialov pri szhatii”, Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Mekhanika, 2009, no. 17, 45–57

[22] Wong T.-f., David C., Zhu W., “The transition from brittle faulting to cataclastic flow in porous sandstones”, J. Geophys. Res., 102 (1997), 3009–3025 | DOI

[23] Wong T.-f., Baud P., “The brittle-ductile transition in porous rock: A review”, J. Struct. Geol., 44 (2012), 25–53 | DOI

[24] Stefanov Yu.P., “Modelirovanie povedeniya konsolidirovannykh i vysokoporistykh geologicheskikh sred v usloviyakh szhatiya”, Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Matematicheskoe modelirovanie sistem i protsessov, 2007, no. 15, 156–169

[25] Walton G., Hedayat A., Kim E., et al., “Post-yield strength and dilatancy evolution across the brittle-ductile transition in indiana limestone”, Rock Mech Rock Eng., 50 (2017), 1–20 | DOI

[26] Johnson G.R., Holmquist T.J., “An improved computational constitutive model for brittle materials”, High Pressure Science and Technology, AIP Conference Proceedings, 309, 1993, 981–984 | DOI

[27] Cronin D.S., Bui K., Kaufman C., “Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA”, 4th European LS-DYNA Users conference (Ulm, Germany, 2003), D-I-47-60

[28] Guimaraes F.A.T., Silva K.L., Trombini V., et. al., “Correlation between microstructure and mechanical properties of Al2O3/ZrO$_2$ nanocomposites”, Ceramic International, 35 (2009), 741–745 | DOI

[29] Tuan W.H., Chen R.Z., Wang T.C., et. al., “Mechanical properties of Al$_2$O$_3$/ZrO$_2$ composites”, J. European Ceramic Society, 22 (2002), 2827–2833 | DOI

[30] Gust W.H., Royce E.B., “Dynamic yield strengths of B$_4$C, BeO and Al$_2$O$_3$ ceramics”, J. Appl. Phys., 42 (1971), 276–295 | DOI

[31] Gust W.H., Holt A.C., Royce E.B., “Dynamic yield, compressional, and elastic parameters for several lightweight intermetallic compounds”, J. Appl. Phys., 44 (1973), 550–560 | DOI

[32] Batsanov S.S., Effects of explosions on materials: Modification and synthesis under high-pressure shock compression, Springer, N.Y., 1994

[33] Fried L.E., Howard W.M., Souers P.C., “A new equation of state library for high pressure thermochemistry”, Twelfth Symposium (International) on Detonation, Office of Naval Research, San Diego, 2002, 567–575

[34] Zhukov I.A., Garkushkin G.V., Vorozhtsov S.A., Khrustalev A.P., Razorenov S.V., Kvetinskaya A.V., Promakhov V.V., Zhukov A.S., “Osobennosti mekhanicheskikh kharakteristik kompozitov Al-Al$_2$O$_3$, poluchennykh vzryvom, pri udarno-volnovom devormirovanii”, Izv. vuzov. Fizika, 58:9 (2015), 141–144

[35] Casellas D., Nagl M.M., Llanes L., Anglada M., “Fracture toughness of alumina and ZTA ceramics; micro structural coarsening effect”, Journal of Materials Processing Technology, 143 (2003), 148–152 | DOI

[36] Tuan W.H., Chen R.Z, Wang T.C., et. al., “Mechanical properties of Al$_2$O$_3$/ZrO$_2$ composites”, Journal of European Ceramic Society, 22 (2002), 2827–2833 | DOI

[37] Korobenkov M.V., Kulkov S.N., “Simulation of fracture of the bone implant with the porous structure”, AIP Conf. Proc., 1760:020033 (2016) | DOI

[38] Rao P.G., Iwasa M., Tanaka T., et. al., “Preparation and mechanical properties of Al$_2$O$_3$-15%ZrO$_2$ composites”, Scripta Materialia, 48 (2003), 437–441 | DOI

[39] Grigoriev A.S., Shilko E.V., Skripnyak V.A., Smolin A.Yu., Psakhie S.G., Bragov A.M., Lomunov A.K., Igumnov L.A., “The numerical study of fracture and strength characteristics of heterogeneous brittle materials under dynamic loading”, AIP Conf. Proc., 1623 (2014), 175–178 | DOI

[40] Korobenkov M.V., Kulkov S.N., Nayamark O.B., Khorechko U.V., Rochina A.V., “Deformation and Damage Accumulation in a Ceramic Composite under Dynamic Loading”, IOP Conf. Ser.: Mater. Sci. Eng., 112 (2016), 012044 | DOI

[41] Lloberas-Valls, O., Huespe A.E., Oliver J., Dias I.F., “Strain injection techniques in dynamic fracture modelling”, Comput. Methods Appl. Mech. Engrg., 308 (2016), 499–534 | DOI

[42] Yue K., Lee H.P., Olson J.E., Schultz R.A., “Apparent fracture toughness for LEFM applications in hydraulic fracture modelling”, Engineering Fracture Mechanics, 230:106984 (2020) | DOI