$\nabla^{N}$-Einstein almost contact metric manifolds
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On an almost contact metric manifold $M$, an $N$-connection $\nabla^{N}$ defined by the pair $(\nabla,N)$, where $\nabla$ is the interior metric connection and $N: TM \to TM$ is an endomorphism of the tangent bundle of the manifold $M$ such that $N\vec\xi=\vec0$, $N(D)\subset D$, is considered. Special attention is paid to the case of a skew-symmetric $N$-connection $\nabla^{N}$, which means that the torsion of an $N$-connection considered as a trivalent covariant tensor is skew-symmetric. Such a connection is uniquely defined and corresponds to the endomorphism $N = 2\psi$, where the endomorphism $\psi$ is defined by the equality $\omega(X,Y)=g(\psi X,Y)$ and is called in this work the second structure endomorphism of an almost contact metric manifold. The notion of a $\nabla^{N}$-Einstein almost contact metric manifold is introduced. For the case $N = 2\psi$, conditions under which almost contact manifolds are $\nabla^{N}$-Einstein manifolds are found.
Keywords: almost contact metric manifold, interior connection, semimetric connection with skew-symmetric torsion, $\nabla^{N}$-Einstein manifold.
@article{VTGU_2021_70_a0,
     author = {S. V. Galaev},
     title = {$\nabla^{N}${-Einstein} almost contact metric manifolds},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--15},
     year = {2021},
     number = {70},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2021_70_a0/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - $\nabla^{N}$-Einstein almost contact metric manifolds
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2021
SP  - 5
EP  - 15
IS  - 70
UR  - http://geodesic.mathdoc.fr/item/VTGU_2021_70_a0/
LA  - ru
ID  - VTGU_2021_70_a0
ER  - 
%0 Journal Article
%A S. V. Galaev
%T $\nabla^{N}$-Einstein almost contact metric manifolds
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2021
%P 5-15
%N 70
%U http://geodesic.mathdoc.fr/item/VTGU_2021_70_a0/
%G ru
%F VTGU_2021_70_a0
S. V. Galaev. $\nabla^{N}$-Einstein almost contact metric manifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 70 (2021), pp. 5-15. http://geodesic.mathdoc.fr/item/VTGU_2021_70_a0/

[1] Agricola I., Ferreira A. C., “Einstein manifolds with skew torsion”, Quart. J. Math., 65 (2014), 717–741 | DOI | Zbl

[2] Gordeeva I. A., Panzhenskii V. I., Stepanov S. E., “Mnogoobraziya Rimana-Kartana”, Itogi nauki i tekhniki. Sovr. mat-ka i ee pril-ya, 123, 2009, 110–141

[3] Friedrich T., Ivanov S., “Parallel spinors and connections with skew-symmetric torsion in string theory”, Asian J. Math., 6 (2002), 303–336 | DOI

[4] Galaev S. V., “Ploskie kososimmetricheskie svyaznosti na mnogoobraziyakh Sasaki”, Trudy seminara po geometrii i matematicheskomu modelirovaniyu, 5, 2019, 20–23

[5] Galaev S. V., “O raspredeleniyakh so spetsialnoi kvazi-sasakievoi strukturoi”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Ser. 1. Mat. Fiz., 2017, no. 2 (39), 6–17

[6] Bejancu A., “Kahler contact distributions”, Journal of Geometry and Physics, 60 (2010), 1958–1967 | DOI | Zbl

[7] Schouten J., Kampen E., “Zur Einbettungs- und Krummungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | Zbl

[8] Falbel E., Gorodski C., “On contact sub-riemannian symmetric spaces”, Annales scientifiques de l'Ecole Normale Superieure. Serie 4, 28:5 (1995), 571–589 | Zbl

[9] Vagner V. V., “Geometriya $(n-1)$-mernogo negolonomnogo mnogoobraziya v n-mernom prostranstve”, Trudy seminara po vektornomu i tenzornomu analizu, 5, Izd-vo Mosk. un-ta, M., 1941, 173–255

[10] Vagner V. V., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Trudy seminara po vektornomu i tenzornomu analizu, 5, Izd-vo Mosk. unta, M., 1941, 301–327

[11] Bukusheva A. V., Galaev S. V., “Geometriya pochti kontaktnykh giperkelerovykh mnogoobrazii”, Differentsialnaya geometriya mnogoobrazii figur, 2017, no. 48, 32–41 | Zbl

[12] Galaev S. V., “Pochti kontaktnye metricheskie struktury, opredelyaemye N-prodolzhennoi svyaznostyu”, Matematicheskie zametki SVFU, 22:1 (2015), 25–34 | Zbl

[13] Galaev S. V., “Prodolzhennye struktury na koraspredeleniyakh kontaktnykh metricheskikh mnogoobrazii”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya. Matematika. Mekhanika. Informatika, 17:2 (2017), 138–147 | Zbl

[14] Galaev S. V., “Admissible Hyper-Complex Pseudo-Hermitian Structures”, Lobachevskii Journal of Mathematics, 39:1 (2018), 71–76 | DOI | Zbl

[15] Bukusheva A. V., “O tenzore Skhoutena – Vagnera negolonomnogo mnogoobraziya Kenmotsu”, Trudy seminara po geometrii i matematicheskomu modelirovaniyu, 5, 2019, 15–19

[16] Krym V. R., “Uravnenie Yakobi dlya gorizontalnykh geodezicheskikh na negolonomnom raspredelenii i tenzor krivizny Skhoutena”, Differentsialnye uravneniya i protsessy upravleniya, 2018, no. 3, 64–94 http://diffjournal.spbu.ru/Ru/numbers/2018.3/article.1.3.html | Zbl

[17] Hamond R. T., “Torsion gravity”, Rep. Prog. Phys., 65 (2002), 599–649 | DOI