Congruences of the Fibonacci numbers modulo a prime
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 15-21
Cet article a éte moissonné depuis la source Math-Net.Ru
Congruences of the form $F(expr1) \equiv\varepsilon F(expr2) \pmod p$ by prime modulo $p$ are proved, whenever $expr1$ is a polynomial with respect to $p$. The value of $\varepsilon$ equals $1$ or $-1$ and $expr2$ does not contain $p$. An example of such a theorem is as follows: given a polynomial $A(p)$ with integer coefficients $a_{k}, a_{k-1}, \dots , a_{2}, a_{1}, a_{0}$ and with respect to $p$ of form $5t \pm 1$; then, $F(A(p))\equiv F(a_{k} + a_{k-1} + \dots + a_{2} + a_{1} + a_{0}) \pmod p$. In particular, we consider the case when the coefficients of the polynomial expr1 form the Pisano period modulo $p$. To search for existing congruences, experiments were performed in the Wolfram Mathematica system.
Keywords:
Fibonacci numbers, rangruences modulo a prime number, Pisano period, Mathematica system.
@article{VTGU_2021_69_a1,
author = {V. M. Zyuz'kov},
title = {Congruences of the {Fibonacci} numbers modulo a prime},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {15--21},
year = {2021},
number = {69},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2021_69_a1/}
}
V. M. Zyuz'kov. Congruences of the Fibonacci numbers modulo a prime. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 69 (2021), pp. 15-21. http://geodesic.mathdoc.fr/item/VTGU_2021_69_a1/
[1] Zyuzkov V. M., Eksperimenty v teorii chisel, Izd-vo NTL, Tomsk, 2019, 348 pp. http://vital.lib.tsu.rU/vital/access/manager/Repository/vtls:000658998
[2] Wolfram Mathematica, http://www.wolfram.com/mathematica
[3] Grekhem R., Knut D., Potashnik O., Konkretnaya matematika. Osnovanie informatiki, 2-e izd., ispr., Mir, M.; BINOM. Laboratoriya znanii, 2006, 703 pp.
[4] Vajda S., Fibonacci Lucas Numbers and the Golden Section: Theory and Applications, Ellis Horwood, Chichester, England, 1989, 190 pp. | MR | Zbl
[5] Weisstein Eric W., Wolfram MathWorld: Pisano Period, https://mathworld.wolfram.com/PisanoPeriod.html