Study of the transparent armor strength under a high-speed impact of a cylindrical impactor by computer modeling method
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 69-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When manufacturing transparent multilayer armor of high threat level, the reinforced silicate glass and transparent ceramics with protecting back films are usually used. The hardness of the front layer of the shield should be much higher than that of the impactor. A promising option is the use of a single leucosapphire crystal. However, due to its high cost and the impossibility of providing large-sized samples, the transparent polycrystalline materials are developed. One of the most advanced materials is ALON, which is close to leucosapphire in strength characteristics. The aim of this work is to develop a mathematical model to calculate the impact interaction of fragmentation elements with transparent armor. The numerical study is carried out using proprietary software systems. Calculations of the high-speed impact of the steel cylindrical impactor are implemented for three types of shields made of transparent armor. The first two-layer target is made of 20 mm thick tempered glass and a 4 mm thick polycarbonate layer. The second and third targets are three-layered. The front layer of the second target is made of ALON, and the spinel is used for the third one. The second and third layers in these targets are made of tempered glass and polycarbonate, respectively. The calculated results show that ALON is the most impact-resistant material, while spinel is a little less resistant.
Keywords: transparent armor, high-speed interaction, mathematical modeling.
@article{VTGU_2020_67_a6,
     author = {N. N. Belov and N. T. Yugov and A. Yu. Sammel and E. Yu. Stepanov},
     title = {Study of the transparent armor strength under a high-speed impact of a cylindrical impactor by computer modeling method},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {69--77},
     year = {2020},
     number = {67},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_67_a6/}
}
TY  - JOUR
AU  - N. N. Belov
AU  - N. T. Yugov
AU  - A. Yu. Sammel
AU  - E. Yu. Stepanov
TI  - Study of the transparent armor strength under a high-speed impact of a cylindrical impactor by computer modeling method
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 69
EP  - 77
IS  - 67
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_67_a6/
LA  - ru
ID  - VTGU_2020_67_a6
ER  - 
%0 Journal Article
%A N. N. Belov
%A N. T. Yugov
%A A. Yu. Sammel
%A E. Yu. Stepanov
%T Study of the transparent armor strength under a high-speed impact of a cylindrical impactor by computer modeling method
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 69-77
%N 67
%U http://geodesic.mathdoc.fr/item/VTGU_2020_67_a6/
%G ru
%F VTGU_2020_67_a6
N. N. Belov; N. T. Yugov; A. Yu. Sammel; E. Yu. Stepanov. Study of the transparent armor strength under a high-speed impact of a cylindrical impactor by computer modeling method. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 67 (2020), pp. 69-77. http://geodesic.mathdoc.fr/item/VTGU_2020_67_a6/

[1] R. L. Gentilman, E. A. Maguire, L. E. Dolhert, Transparent Aluminum Oxynitride and Method of Manufacture, US Patent No 4520116

[2] G. I. Kanel, S. V. Razorenov, A. V. Utkin, V. E. Fortov, Shock-wave phenomena in condensed media, Janus-K, M., 1996

[3] M. V. Zhernokletov, V. N. Zubarev, R. F. Trunin, V. E. Fortov, Experimental data on shock compressibility and adiabatic expansion of condensed media at high energy densities, Chernogolovka, 1996, 385 pp.

[4] R. F. Trunin, Study of extreme conditions of condensed media by the shock wave method. The Hugoniot equations, Russian Federal Nuclear Centre All-Soviet Union Research Institute of Experimental Physics, Sarov, 2006, 286 pp.

[5] L. M. Barker, R. E. Hollenbach, “Shock-wave studies of PMMA, fused silica, and sapphire”, J. Appl. Phys., 41 (1970), 4208–4226 | DOI

[6] A. S. Savinykh, G. I. Kanel, S. V. Razorenov, “Strength of sapphire at spall fracture”, Pis'ma v zhurnal tekhnicheskoy fiziki – Technical Physics Letters, 37:7 (2011), 8–15

[7] N. N. Belov, V. N. Demidov, L. V. Efremov et al., “Computer simulation of the high-speed impact dynamics and related physical phenomena”, Izvestiya vysshikh uchebnykh zavedeniy. Fizika Russian Physics Journal, 35:8 (1992), 5–49 | MR

[8] S. A. Afanas'eva, N. N. Belov, V. F. Tolkachev, M. V. Khabibulin, N. T. Yugov, “Features of shockwave deformation of porous Al$_2$O$_3$ ceramics”, Doklady Akademii Nauk, 368:4 (1999), 474–481

[9] N. N. Belov, N. T. Yugov, A. N. Tabachenko et al, “Mathematical modeling of deformation and fracture of the cermet in terms of dynamic loading”, Izvestiya vysshikh uchebnykh zavedeniy. Fizika – Russian Physics Journal, 2002, no. 8, 54–59

[10] N. N. Belov, N. T. Yugov, D. G. Kopanitsa, A. A. Yugov, Dinamika vysokoskorostnogo udara i soputstvuyuschie fizicheskie yavleniya. Northampton, STT, Tomsk, 2005, 356 pp.; N. N. Belov, N. T. Yugov, D. G. Kopanitsa, A. A. Yugov, “Dynamics of high-speed impact and related physical phenomena”, Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture, 356

[11] N. N. Belov, O. V. Kabantsev, D. G. Kopanitsa, N. T. Yugov, Calculation and experimental method for the analysis of the dynamic strength of elements of reinforced concrete structures, STT, Tomsk, 2008

[12] N. T. Yugov, N. N. Belov, A. A. Yugov, Calculation of adiabatic unsteady flows in a three-dimensional formulation (RANET-3), RF Patent 2010611042, 2010

[13] G. A. Geniev, V. N. Kissyuk, “On the generalization of the theory of concrete strength”, Beton i zhelezobeton, 1965, no. 2, 16–29

[14] https://en.wikipedia.org/wiki/Aluminium_oxynitride

[15] M. O. Senina, D. O. Lemeshev, “Methods of synthesizing of magnesium-aluminum spinel powders to produce optically transparent ceramics (review)”, Uspekhi v khimii i khimicheskoy tekhnologii, 30:7 (2016), 101–103

[16] https://en.wikipedia.org/wiki/Spinel

[17] V. F. Anisichkin, “To the calculation of shock adiabats of chemical compounds”, Fizika goreniya i vzryva – Combustion, Explosion and Shock Waves, 1980, no. 5, 151–153