Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 5-23
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we study generalized Kenmotsu manifolds (shortly, a GK-manifold) that satisfy the axiom of $\Phi$-holomorphic $(2r+1)$-planes. After the preliminaries we give the definition of generalized Kenmotsu manifolds and the full structural equation group. Next, we define $\Phi$-holomorphic generalized Kenmotsu manifolds and $\Phi$-paracontact generalized Kenmotsu manifold give a local characteristic of this subclasses. The $\Phi$-holomorphic generalized Kenmotsu manifold coincides with the class of almost contact metric manifolds obtained from closely cosymplectic manifolds by a canonical concircular transformation of nearly cosymplectic structure. A $\Phi$-paracontact generalized Kenmotsu manifold is a special generalized Kenmotsu manifold of the second kind. An analytical expression is obtained for the tensor of $\Phi$-holomorphic sectional curvature of generalized Kenmotsu manifolds of the pointwise constant $\Phi$-holomorphic sectional curvature. 
Then we study the axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized Kenmotsu manifolds and propose a complete classification of simply connected generalized Kenmotsu manifolds satisfying the axiom of $\Phi$-holomorphic $(2r+1)$-planes. The main results are as follows. A simply connected GK-manifold of pointwise constant $\Phi$-holomorphic sectional curvature satisfying the axiom of $\Phi$-holomorphic $(2r+1)$-planes is a Kenmotsu manifold. A GK-manifold satisfies the axiom of $\Phi$-holomorphic $(2r+1)$-planes if and only if it is canonically concircular to one of the following manifolds: (1) $\mathbf{CP^n}\times\mathbf{R}$; (2) $\mathbf{C^n}\times\mathbf{R}$; and (3) $\mathbf{CH^n}\times\mathbf{R}$ having the canonical cosymplectic structure.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
almost contact metric structure, generalized Kentmotsu manifold, special generalized Kentmotsu manifold, axiom of $\Phi$-holomorphic planes, $\Phi$-quasiinvariant manifold, $\Phi$-paracontact manifold.
Mots-clés : Kentmotsu structure
                    
                  
                
                
                Mots-clés : Kentmotsu structure
@article{VTGU_2020_66_a0,
     author = {Ahmad Abu-Saleem and A. R. Rustanov and S. V. Kharitonova},
     title = {Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--23},
     publisher = {mathdoc},
     number = {66},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/}
}
                      
                      
                    TY - JOUR AU - Ahmad Abu-Saleem AU - A. R. Rustanov AU - S. V. Kharitonova TI - Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 5 EP - 23 IS - 66 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/ LA - ru ID - VTGU_2020_66_a0 ER -
%0 Journal Article %A Ahmad Abu-Saleem %A A. R. Rustanov %A S. V. Kharitonova %T Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 5-23 %N 66 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/ %G ru %F VTGU_2020_66_a0
Ahmad Abu-Saleem; A. R. Rustanov; S. V. Kharitonova. Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 5-23. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/
