Mots-clés : Kentmotsu structure
@article{VTGU_2020_66_a0,
author = {Ahmad Abu-Saleem and A. R. Rustanov and S. V. Kharitonova},
title = {Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--23},
year = {2020},
number = {66},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/}
}
TY - JOUR AU - Ahmad Abu-Saleem AU - A. R. Rustanov AU - S. V. Kharitonova TI - Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2020 SP - 5 EP - 23 IS - 66 UR - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/ LA - ru ID - VTGU_2020_66_a0 ER -
%0 Journal Article %A Ahmad Abu-Saleem %A A. R. Rustanov %A S. V. Kharitonova %T Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2020 %P 5-23 %N 66 %U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/ %G ru %F VTGU_2020_66_a0
Ahmad Abu-Saleem; A. R. Rustanov; S. V. Kharitonova. Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 5-23. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/
[1] I. Ishihara, “Anti-invariant submanifolds of a Sasakian space form”, Kodai Math. J., 2:2 (1979), 171–186 | DOI | MR | Zbl
[2] S. Tanno, “Sasakian manifolds with constant $\Phi$-holomorfic sectional curvature”, Tohoku Math. J., 21:3 (1969), 501–507 | DOI | MR | Zbl
[3] K. Ogiue, “On almost contact manifolds admitting axiom of planes or axiom of free mobility”, Kodai Math. Semin. Repts., 16:4 (1964), 223–232 | DOI | MR | Zbl
[4] V. F. Kirichenko, “The axiom of $\Phi$-holomorphic planes in contact geometry”, Mathematics of the USSR Izvestiya, 25:1 (1985), 51–73 | DOI | MR | Zbl
[5] V. F. Kirichenko, “Almost cosymplectic manifolds satisfying the axiom of $\Phi$-holomorphic planes”, Doklady Akademii Nauk SSSR, 273:2 (1983), 280–284 | MR | Zbl
[6] V. F. Kirichenko, A. R. Rustanov, “Differential geometry of quasi-Sasakian manifolds”, Sbornik: Mathematics, 193:8 (2002), 1173–1201 | DOI | DOI | MR | Zbl
[7] E. S. Volkova, “The Axiom of $\Phi$-holomorphic planes for normal killing type manifolds”, Mathematical Notes, 71 (2002), 330–338 | DOI | DOI | MR | Zbl
[8] A. R. Rustanov, A. Z. Salakhov, R. A. Khairov, “The Axiom of $\Phi$-holomorphic $(2r+1)$-planes for almost contact metric manifolds of class NC$_{10}$”, Vestnik Adygeyskogo gosudarstvennogo universiteta. Seriya “Estestvenno-matematicheskiye i tekhnicheskiye nauki” – The Bulletin of the Adyghe State University, Series “Natural-Mathematical and Technical Sciences”, 2017, no. 1, 19–24
[9] A. R. Rustanov, O. N. Kazakova, S. V. Kharitonova, “The axiom of $\Phi$-holomorphic $(2r+1)$-planes for normal LcACs-manifolds”, Vestnik OGU – Vestnik of the Orenburg State University, 2015, no. 4 (179), 224–238
[10] A. Abu-Saleem, A. R. Rustanov, “Curvature Identities Special Generalized Manifolds Kenmotsu Second Kind”, Malaysian J. Mathematical Sciences, 9:2 (2015), 187–207 | MR
[11] S. V. Umnova, “On conformal invariant of Kenmotsu manifolds”, Webs and Quasigroups, Tver State Univ., 2002, 155–156 | MR
[12] Abu-Saleem Ahmad, A. R. Rustanov, “Some aspects of the geometry of generalized manifolds Kenmotsu”, Far East J. Mathematical Sciences (FJMS), 103:9 (2018), 1407–1432 | DOI
[13] V. F. Kirichenko, “On the geometry of Kenmotsu manifolds”, Doklady Mathematics, 64:2 (2001), 230–232 | MR | Zbl
[14] Abu-Saleem Ahmad, A. R. Rustanov, “Analogs of Gray identities for the Riemannian curvature tensor of generalized Kenmotsu manifolds”, International Mathematical Forum, 12:2 (2017), 87–95 | DOI
[15] A. Abu-Saleem, A. R. Rustanov, S. V. Kharitonova, “Integrability properties of generalized Kenmotsu manifolds”, Vladikavkazskiy matematicheskiy zhurnal – Vladikavkazian Mathematical Journal, 20:3 (2018), 4–20 | DOI | MR | Zbl
[16] D. E. Blair, D. K. Showers, “Almost contact manifolds with Killing structure tensors II”, J. Diff. Geom., 9:4 (1974), 577–582 | DOI | MR | Zbl
[17] G. B. Rizza, “Varieta parakahleriane”, Ann. Mat. Pure et Appl., 98:4 (1974), 47–61 | DOI | MR | Zbl
[18] V. F. Kirichenko, “Sur le geometrie des varieties approximativement cosymplectiques”, C.R. Acad. Sci. Paris. Ser. I. Math., 295:1 (1982), 673–676 | MR | Zbl