Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 5-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study generalized Kenmotsu manifolds (shortly, a GK-manifold) that satisfy the axiom of $\Phi$-holomorphic $(2r+1)$-planes. After the preliminaries we give the definition of generalized Kenmotsu manifolds and the full structural equation group. Next, we define $\Phi$-holomorphic generalized Kenmotsu manifolds and $\Phi$-paracontact generalized Kenmotsu manifold give a local characteristic of this subclasses. The $\Phi$-holomorphic generalized Kenmotsu manifold coincides with the class of almost contact metric manifolds obtained from closely cosymplectic manifolds by a canonical concircular transformation of nearly cosymplectic structure. A $\Phi$-paracontact generalized Kenmotsu manifold is a special generalized Kenmotsu manifold of the second kind. An analytical expression is obtained for the tensor of $\Phi$-holomorphic sectional curvature of generalized Kenmotsu manifolds of the pointwise constant $\Phi$-holomorphic sectional curvature. Then we study the axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized Kenmotsu manifolds and propose a complete classification of simply connected generalized Kenmotsu manifolds satisfying the axiom of $\Phi$-holomorphic $(2r+1)$-planes. The main results are as follows. A simply connected GK-manifold of pointwise constant $\Phi$-holomorphic sectional curvature satisfying the axiom of $\Phi$-holomorphic $(2r+1)$-planes is a Kenmotsu manifold. A GK-manifold satisfies the axiom of $\Phi$-holomorphic $(2r+1)$-planes if and only if it is canonically concircular to one of the following manifolds: (1) $\mathbf{CP^n}\times\mathbf{R}$; (2) $\mathbf{C^n}\times\mathbf{R}$; and (3) $\mathbf{CH^n}\times\mathbf{R}$ having the canonical cosymplectic structure.
Keywords: almost contact metric structure, generalized Kentmotsu manifold, special generalized Kentmotsu manifold, axiom of $\Phi$-holomorphic planes, $\Phi$-quasiinvariant manifold, $\Phi$-paracontact manifold.
Mots-clés : Kentmotsu structure
@article{VTGU_2020_66_a0,
     author = {Ahmad Abu-Saleem and A. R. Rustanov and S. V. Kharitonova},
     title = {Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--23},
     year = {2020},
     number = {66},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/}
}
TY  - JOUR
AU  - Ahmad Abu-Saleem
AU  - A. R. Rustanov
AU  - S. V. Kharitonova
TI  - Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 5
EP  - 23
IS  - 66
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/
LA  - ru
ID  - VTGU_2020_66_a0
ER  - 
%0 Journal Article
%A Ahmad Abu-Saleem
%A A. R. Rustanov
%A S. V. Kharitonova
%T Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 5-23
%N 66
%U http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/
%G ru
%F VTGU_2020_66_a0
Ahmad Abu-Saleem; A. R. Rustanov; S. V. Kharitonova. Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 66 (2020), pp. 5-23. http://geodesic.mathdoc.fr/item/VTGU_2020_66_a0/

[1] I. Ishihara, “Anti-invariant submanifolds of a Sasakian space form”, Kodai Math. J., 2:2 (1979), 171–186 | DOI | MR | Zbl

[2] S. Tanno, “Sasakian manifolds with constant $\Phi$-holomorfic sectional curvature”, Tohoku Math. J., 21:3 (1969), 501–507 | DOI | MR | Zbl

[3] K. Ogiue, “On almost contact manifolds admitting axiom of planes or axiom of free mobility”, Kodai Math. Semin. Repts., 16:4 (1964), 223–232 | DOI | MR | Zbl

[4] V. F. Kirichenko, “The axiom of $\Phi$-holomorphic planes in contact geometry”, Mathematics of the USSR Izvestiya, 25:1 (1985), 51–73 | DOI | MR | Zbl

[5] V. F. Kirichenko, “Almost cosymplectic manifolds satisfying the axiom of $\Phi$-holomorphic planes”, Doklady Akademii Nauk SSSR, 273:2 (1983), 280–284 | MR | Zbl

[6] V. F. Kirichenko, A. R. Rustanov, “Differential geometry of quasi-Sasakian manifolds”, Sbornik: Mathematics, 193:8 (2002), 1173–1201 | DOI | DOI | MR | Zbl

[7] E. S. Volkova, “The Axiom of $\Phi$-holomorphic planes for normal killing type manifolds”, Mathematical Notes, 71 (2002), 330–338 | DOI | DOI | MR | Zbl

[8] A. R. Rustanov, A. Z. Salakhov, R. A. Khairov, “The Axiom of $\Phi$-holomorphic $(2r+1)$-planes for almost contact metric manifolds of class NC$_{10}$”, Vestnik Adygeyskogo gosudarstvennogo universiteta. Seriya “Estestvenno-matematicheskiye i tekhnicheskiye nauki” – The Bulletin of the Adyghe State University, Series “Natural-Mathematical and Technical Sciences”, 2017, no. 1, 19–24

[9] A. R. Rustanov, O. N. Kazakova, S. V. Kharitonova, “The axiom of $\Phi$-holomorphic $(2r+1)$-planes for normal LcACs-manifolds”, Vestnik OGU – Vestnik of the Orenburg State University, 2015, no. 4 (179), 224–238

[10] A. Abu-Saleem, A. R. Rustanov, “Curvature Identities Special Generalized Manifolds Kenmotsu Second Kind”, Malaysian J. Mathematical Sciences, 9:2 (2015), 187–207 | MR

[11] S. V. Umnova, “On conformal invariant of Kenmotsu manifolds”, Webs and Quasigroups, Tver State Univ., 2002, 155–156 | MR

[12] Abu-Saleem Ahmad, A. R. Rustanov, “Some aspects of the geometry of generalized manifolds Kenmotsu”, Far East J. Mathematical Sciences (FJMS), 103:9 (2018), 1407–1432 | DOI

[13] V. F. Kirichenko, “On the geometry of Kenmotsu manifolds”, Doklady Mathematics, 64:2 (2001), 230–232 | MR | Zbl

[14] Abu-Saleem Ahmad, A. R. Rustanov, “Analogs of Gray identities for the Riemannian curvature tensor of generalized Kenmotsu manifolds”, International Mathematical Forum, 12:2 (2017), 87–95 | DOI

[15] A. Abu-Saleem, A. R. Rustanov, S. V. Kharitonova, “Integrability properties of generalized Kenmotsu manifolds”, Vladikavkazskiy matematicheskiy zhurnal – Vladikavkazian Mathematical Journal, 20:3 (2018), 4–20 | DOI | MR | Zbl

[16] D. E. Blair, D. K. Showers, “Almost contact manifolds with Killing structure tensors II”, J. Diff. Geom., 9:4 (1974), 577–582 | DOI | MR | Zbl

[17] G. B. Rizza, “Varieta parakahleriane”, Ann. Mat. Pure et Appl., 98:4 (1974), 47–61 | DOI | MR | Zbl

[18] V. F. Kirichenko, “Sur le geometrie des varieties approximativement cosymplectiques”, C.R. Acad. Sci. Paris. Ser. I. Math., 295:1 (1982), 673–676 | MR | Zbl