A mathematical model of a selective nanopore
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 114-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Membrane separation of mixtures is widely used in chemical, fuel and energy, pharmaceutical, food, and other industries. In particular, mixed gases are separated by porous carbon membranes of various designs. This work deals with a study of selective properties of a carbon nanopore in terms of its ability to separate helium-methane mixtures. Gaining knowledge of nanopore characteristics allows us to design nanoporous membranes that are optimal for our purposes. The membrane composed of carbon nanoparticles has a potential energy barrier representing the summed energy of the interaction between the molecule passing through a membrane and each nanoparticle of the structure. The trajectory and velocity of the molecule are obtained when solving a system of differential equations using the Runge-Kutta fourth-order method. Permeability of the resulting filter element is determined by the molecular dynamics method as a ratio of the molecules passed through the membrane to the total number of launched ones. Mathematical modeling of the described problem shows good selective properties of the carbon nanopore in terms of separation of a helium-methane mixture. Based on the calculated results, the most efficient pore diameter has been revealed, as well as the optimal density of the material providing the highest separation ratio for the mixtures under consideration.
Keywords: nanopore, gas separation, permeability, molecular motion, field of potential forces, numerical methods.
Mots-clés : membrane, filtration, nanoparticles
@article{VTGU_2020_65_a8,
     author = {V. A. Poteryaeva},
     title = {A mathematical model of a selective nanopore},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {114--123},
     year = {2020},
     number = {65},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2020_65_a8/}
}
TY  - JOUR
AU  - V. A. Poteryaeva
TI  - A mathematical model of a selective nanopore
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2020
SP  - 114
EP  - 123
IS  - 65
UR  - http://geodesic.mathdoc.fr/item/VTGU_2020_65_a8/
LA  - ru
ID  - VTGU_2020_65_a8
ER  - 
%0 Journal Article
%A V. A. Poteryaeva
%T A mathematical model of a selective nanopore
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2020
%P 114-123
%N 65
%U http://geodesic.mathdoc.fr/item/VTGU_2020_65_a8/
%G ru
%F VTGU_2020_65_a8
V. A. Poteryaeva. A mathematical model of a selective nanopore. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 114-123. http://geodesic.mathdoc.fr/item/VTGU_2020_65_a8/

[1] L. Xu, T. T. Tsotsis, M. Sahimi, “Nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores. I. Basic results”, The Journal of Chemical Physics, 111:7 (1999), 3252–3264 | DOI

[2] G. Chen, Y. An, Y. Shen, Y. Wang, Tang Z, Lu B, , D. Zhang, “Effect of Pore Size on CH$_4$/N$_2$ Separation using Activated Carbon”, Chinese Journal of Chemical Engineering, 2020 | DOI

[3] B. Raghavan, T. Gupta, “H$_2$/CH$_4$ gas separation using graphene drilled with elliptical pores”, Materials Today: Proceedings, 5:10 (2018), 20972–20976 | DOI

[4] H. Liu, S. Dai, D. Jiang, “Permeance of H$_2$ through porous graphene from molecular dynamics”, Solid State Communications, 175-176 (2013), 101–105 | DOI

[5] T. Wu, Q. Xue, C. Ling, M. Shan, Z. Liu, Y. Tao, X. Li, “Fluorine-modified porous graphene as membrane for CO$_2$/N$_2$ separation: Molecular dynamic and first-principles simulations”, The Journal of Physical Chemistry, 118:14 (2014), 7369–7376 | DOI

[6] H. Liu, S. Dai, D. Jiang, “Insights into CO$_2$/N$_2$ separation through nanoporous graphene from molecular dynamics”, Nanoscale, 5:20 (2013), 9984 | DOI

[7] H. Du, J. Li, J. Zhang, G. Su, X. Li, Y. Zhao, “Separation of hydrogen and nitrogen gases with porous graphene membrane”, The Journal of Physical Chemistry, 115:47 (2011), 23261–23266 | DOI

[8] S. Mohammad, R. Gharibzahedi, J. Karimi-Sabet, “Gas separation in nanoporous graphene from molecular dynamics simulation”, Chemical Product and Process Modeling, 11:1 (2016) | DOI

[9] M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, J. Campos-Martínez, F. Pirani, G. Giorgi, “Graphdiyne pores:Ad Hoc- openings for helium separation applications”, The Journal of Physical Chemistry, 118:51 (2014), 29966–29972 | DOI

[10] S. Nikkho, M. Mirzaei, J. K. Sabet, M. A. Moosavian, S. M. Hedayat, “Enhanced quality of transfer-free graphene membrane for He/CH$_4$ separation”, Separation and Purification Technology, 2019, 115972 | DOI

[11] R. W. Chang, C. J. Lin, S. Y.H. Liou, M. A. Bañares, M. O. Guerrero-Pérez, R. M. Martín Aranda, “Enhanced cyclic CO$_2$/N$_2$ separation performance stability on chemically modified N-doped ordered mesoporous carbon”, Catalysis Today, 2019 | DOI

[12] L. Li, C. Song, H. Jiang, J. Qiu, T. Wang, “Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer”, Journal of Membrane Science, 450 (2014), 469–477 | DOI

[13] S. M. Mahurin, J. S. Lee, X. Wang, S. Dai, “Ammonia-activated mesoporous carbon membranes for gas separations”, Journal of Membrane Science, 368:1-2 (2011), 41–47 | DOI

[14] S. H. Choi, M. S. Qahtani, E. A. Qasem, “Multilayer thin-film composite membranes for helium enrichment”, Journal of Membrane Science, 553 (2018), 180–188 | DOI

[15] S. H. Choi, M. M.B. Sultan, A. A. Alsuwailem, S. M. Zuabi, “Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures”, Separation and Purification Technology, 222 (2019), 152–161 | DOI

[16] V. A. Poteryaeva, O. V. Usenko, A. A. Sherstobitov, “Differential permeability of an ultrathin porous layer of monodisperse nanoparticles”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 2 (34), 96–102 | DOI

[17] M. A. Bubenchikov, A. M. Bubenchikov, O. V. Usenko, V. A. Poteryaeva, Zhambaa Soninbaiar, “Separation of gases using ultra-thin porous layers of monodisperse nanoparticles”, EPJ Web of Conferences, 110 (2016), 01014-1–01014-6 | DOI

[18] A. M. Bubenchikov, M. A. Bubenchikov, V. A. Poteryaeva, E. E. Libin, “The wave permeability of a compacted nanoparticle layer”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 3 (41), 51–57 | DOI

[19] V. A. Poteryaeva, O. V. Usenko, A. A. Sherstobitov, “Differential permeability of a layer of polydisperse nanoparticles”, The collected papers of the VII International Scientific Conference of Young Scientists, Section 2: Electrotechology, 2015, 101–104

[20] M. A. Bubenchikov, V. A. Poteryaeva, A. V. Ukolov, “Helium passage through homogeneous ultrafine hydrocarbon layers”, EPJ Web of Conferences, 110 (2017), 01085 | DOI

[21] A. M. Bubenchikov, M. A. Bubenchikov, A. I. Potekaev, E. E. Libin, Yu. P. Hudobina, “The potential field of carbon bodies as a basis for sorption properties of barrier gas systems”, Russian Physics Journal, 58:7 (2015), 882–888 | DOI

[22] J. Ortega, Scientific computing and computer science, Academic Press, N.Y., 1976, 340 pp. | MR