Mots-clés : membrane, filtration, nanoparticles
@article{VTGU_2020_65_a8,
author = {V. A. Poteryaeva},
title = {A mathematical model of a selective nanopore},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {114--123},
year = {2020},
number = {65},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_65_a8/}
}
V. A. Poteryaeva. A mathematical model of a selective nanopore. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 65 (2020), pp. 114-123. http://geodesic.mathdoc.fr/item/VTGU_2020_65_a8/
[1] L. Xu, T. T. Tsotsis, M. Sahimi, “Nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores. I. Basic results”, The Journal of Chemical Physics, 111:7 (1999), 3252–3264 | DOI
[2] G. Chen, Y. An, Y. Shen, Y. Wang, Tang Z, Lu B, , D. Zhang, “Effect of Pore Size on CH$_4$/N$_2$ Separation using Activated Carbon”, Chinese Journal of Chemical Engineering, 2020 | DOI
[3] B. Raghavan, T. Gupta, “H$_2$/CH$_4$ gas separation using graphene drilled with elliptical pores”, Materials Today: Proceedings, 5:10 (2018), 20972–20976 | DOI
[4] H. Liu, S. Dai, D. Jiang, “Permeance of H$_2$ through porous graphene from molecular dynamics”, Solid State Communications, 175-176 (2013), 101–105 | DOI
[5] T. Wu, Q. Xue, C. Ling, M. Shan, Z. Liu, Y. Tao, X. Li, “Fluorine-modified porous graphene as membrane for CO$_2$/N$_2$ separation: Molecular dynamic and first-principles simulations”, The Journal of Physical Chemistry, 118:14 (2014), 7369–7376 | DOI
[6] H. Liu, S. Dai, D. Jiang, “Insights into CO$_2$/N$_2$ separation through nanoporous graphene from molecular dynamics”, Nanoscale, 5:20 (2013), 9984 | DOI
[7] H. Du, J. Li, J. Zhang, G. Su, X. Li, Y. Zhao, “Separation of hydrogen and nitrogen gases with porous graphene membrane”, The Journal of Physical Chemistry, 115:47 (2011), 23261–23266 | DOI
[8] S. Mohammad, R. Gharibzahedi, J. Karimi-Sabet, “Gas separation in nanoporous graphene from molecular dynamics simulation”, Chemical Product and Process Modeling, 11:1 (2016) | DOI
[9] M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, J. Campos-Martínez, F. Pirani, G. Giorgi, “Graphdiyne pores:Ad Hoc- openings for helium separation applications”, The Journal of Physical Chemistry, 118:51 (2014), 29966–29972 | DOI
[10] S. Nikkho, M. Mirzaei, J. K. Sabet, M. A. Moosavian, S. M. Hedayat, “Enhanced quality of transfer-free graphene membrane for He/CH$_4$ separation”, Separation and Purification Technology, 2019, 115972 | DOI
[11] R. W. Chang, C. J. Lin, S. Y.H. Liou, M. A. Bañares, M. O. Guerrero-Pérez, R. M. Martín Aranda, “Enhanced cyclic CO$_2$/N$_2$ separation performance stability on chemically modified N-doped ordered mesoporous carbon”, Catalysis Today, 2019 | DOI
[12] L. Li, C. Song, H. Jiang, J. Qiu, T. Wang, “Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer”, Journal of Membrane Science, 450 (2014), 469–477 | DOI
[13] S. M. Mahurin, J. S. Lee, X. Wang, S. Dai, “Ammonia-activated mesoporous carbon membranes for gas separations”, Journal of Membrane Science, 368:1-2 (2011), 41–47 | DOI
[14] S. H. Choi, M. S. Qahtani, E. A. Qasem, “Multilayer thin-film composite membranes for helium enrichment”, Journal of Membrane Science, 553 (2018), 180–188 | DOI
[15] S. H. Choi, M. M.B. Sultan, A. A. Alsuwailem, S. M. Zuabi, “Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures”, Separation and Purification Technology, 222 (2019), 152–161 | DOI
[16] V. A. Poteryaeva, O. V. Usenko, A. A. Sherstobitov, “Differential permeability of an ultrathin porous layer of monodisperse nanoparticles”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 2 (34), 96–102 | DOI
[17] M. A. Bubenchikov, A. M. Bubenchikov, O. V. Usenko, V. A. Poteryaeva, Zhambaa Soninbaiar, “Separation of gases using ultra-thin porous layers of monodisperse nanoparticles”, EPJ Web of Conferences, 110 (2016), 01014-1–01014-6 | DOI
[18] A. M. Bubenchikov, M. A. Bubenchikov, V. A. Poteryaeva, E. E. Libin, “The wave permeability of a compacted nanoparticle layer”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika–Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 3 (41), 51–57 | DOI
[19] V. A. Poteryaeva, O. V. Usenko, A. A. Sherstobitov, “Differential permeability of a layer of polydisperse nanoparticles”, The collected papers of the VII International Scientific Conference of Young Scientists, Section 2: Electrotechology, 2015, 101–104
[20] M. A. Bubenchikov, V. A. Poteryaeva, A. V. Ukolov, “Helium passage through homogeneous ultrafine hydrocarbon layers”, EPJ Web of Conferences, 110 (2017), 01085 | DOI
[21] A. M. Bubenchikov, M. A. Bubenchikov, A. I. Potekaev, E. E. Libin, Yu. P. Hudobina, “The potential field of carbon bodies as a basis for sorption properties of barrier gas systems”, Russian Physics Journal, 58:7 (2015), 882–888 | DOI
[22] J. Ortega, Scientific computing and computer science, Academic Press, N.Y., 1976, 340 pp. | MR