Mots-clés : Schouten tensor
@article{VTGU_2020_64_a0,
author = {A. V. Bukusheva},
title = {Kenmotsu manifolds with a zero curvature distribution},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--14},
year = {2020},
number = {64},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2020_64_a0/}
}
A. V. Bukusheva. Kenmotsu manifolds with a zero curvature distribution. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 64 (2020), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2020_64_a0/
[1] A. V. Bukusheva, S. V. Galaev, “Almost contact metric structures defined by connection over distribution”, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, 45:2 (2011), 13–22 | MR
[2] A. V. Bukusheva, “Nonlinear connections and internal semipulverizations on a distribution with a generalized Lagrangian metric”, Differentsialnaya geometriya mnogoobraziy figur, 2015, no. 46, 58–63 | MR
[3] S. V. Galaev, “Extended structures on codistributions of contact metric manifolds”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 17:2 (2017), 138–147 | DOI | MR | Zbl
[4] A. V. Bukusheva, S. V. Galaev, “Connections over a distribution and geodesic sprays”, Russian Math. (Iz. VUZ), 57:4 (2013), 7–13 | DOI | MR | Zbl
[5] S. V. Galaev, “Almost contact metric manifolds with distribution of zero curvature”, Belgorod State University Scientific Bulletin. Mathematics Physics, 46:6 (255) (2017), 36–43
[6] A. V. Bukusheva, “On geometry of Kenmotsu manifolds with N-connection”, Differentsial'naya geometriya mnogoobraziy figur, 2019, no. 50, 48–60 | DOI | Zbl
[7] S. Golab, “On semi-symmetric and quarter-symmetric linear connections”, Tensor. N.S., 29 (1975), 293–301 | MR
[8] I. A. Gordeeva, V. I. Panzhensky, S. E. Stepanov, “Riemann-Cartan manifolds”, Itogi nauki i tekhniki, 123, 2009, 110–141 | MR
[9] S. V. Galaev, “Almost contact metric spaces with N-connection”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:3 (2015), 258–263 | DOI
[10] A. V. Bukusheva, “The geometry of contact metric spaces with $\varphi$-connection”, Scientific Bulletin of Belgorod State University. Ser. Mathematics. Physics, 40:7 (214) (2015), 20–24
[11] S. V. Galaev, “Intrinsic geometry of almost contact Kahlerian manifolds”, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 31:1 (2015), 35–46 | MR | Zbl
[12] A. V. Bukusheva, S. V. Galaev, “Geometry of an almost contact hyper-Kähler manifolds”, Differentsialnaya geometriya mnogoobraziy figur, 2017, no. 48, 32–41 | MR | Zbl
[13] S. V. Galaev, “Admissible Hyper-Complex Pseudo-Hermitian Structures”, Lobachevskii Journal of Mathematics, 39:1 (2018), 71–76 | DOI | MR | Zbl
[14] K. Kenmotsu, “A class of almost contact Riemannian manifolds”, Tohoku Math. J., 24 (1972), 93–103 | DOI | MR | Zbl
[15] G. Pitis, Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007, 160 pp. | MR | Zbl
[16] V. V. Vagner, “Geometry of the $(n-1)$-dimensional manifold in the $n$-dimensional space”, Trudy seminara po vektornomu i tenzornomu analizu, 5, 173–255 | MR