Distribution of the concentration of injected impurity under surface treatment by consecutive pulses
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 105-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Surface treatment by particle flux is widely used for improving the operating properties of materials. At the instant of interaction between particles and target surface, various processes occur such as heating, phase formation, mixing, generation of the elastic waves of mechanical disturbances, etc. Experimental study of these processes separately is difficult. However, mathematical modeling allows one to study in detail the treatment process at any stage and to analyze the role of each occurring phenomenon separately. The paper presents a coupled mathematical model of the initial stage of particles' penetration into a metal surface under non-isothermal conditions. It is assumed that the injected particles possess sufficient energy to generate mechanical disturbances on the target surface at the instant of interaction. The model takes into account the finiteness of relaxation time for heat and mass fluxes and the interaction of the waves of different physical nature - distribution of mechanical disturbances and diffusion of injected material. The developed numerical algorithm is based on the implicit difference scheme. The examples of coupled problem solution are given for the cases of treatment by one and two pulses. The differences between resulting distributions are revealed. The work also demonstrates the distortions in the waves of deformation and temperature which represent the consequences of the interaction of studied processes.
Keywords: mathematical modeling, non-isothermal coupled model, stress, deformation, relaxation time, consecutive pulses.
Mots-clés : diffusion, particle flux
@article{VTGU_2019_62_a8,
     author = {E. S. Parfenova},
     title = {Distribution of the concentration of injected impurity under surface treatment by consecutive pulses},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {105--118},
     year = {2019},
     number = {62},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_62_a8/}
}
TY  - JOUR
AU  - E. S. Parfenova
TI  - Distribution of the concentration of injected impurity under surface treatment by consecutive pulses
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 105
EP  - 118
IS  - 62
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_62_a8/
LA  - ru
ID  - VTGU_2019_62_a8
ER  - 
%0 Journal Article
%A E. S. Parfenova
%T Distribution of the concentration of injected impurity under surface treatment by consecutive pulses
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 105-118
%N 62
%U http://geodesic.mathdoc.fr/item/VTGU_2019_62_a8/
%G ru
%F VTGU_2019_62_a8
E. S. Parfenova. Distribution of the concentration of injected impurity under surface treatment by consecutive pulses. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 62 (2019), pp. 105-118. http://geodesic.mathdoc.fr/item/VTGU_2019_62_a8/

[1] N. N. Cherenda, V. V. Uglov, V. M. Anishchik et al., “Modification of high-speed steels by nitrogen compression plasma flow: structure, element composition, tribological properties”, Surf. Coat. Technol., 200:18–19 (2006), 5334–5342 | DOI

[2] V. V. Uglov, A. K. Kuleshov, G. E. Remnev, M. S. Saltymakov, V. M. Astashinsky, “Modification of the hard alloy T15K6 by highpower pulsed ion beams and compression plasma flows”, Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional'nye pokrytiya – Universities' Proceedings. Powder Metallurgy and Functional Coatings, 2011, no. 3, 63–68

[3] A. V. Panin, M. S. Kazachenok, O. B. Perevalova, E. A. Sinyakova, K. V. Krukovsky, S. A. Martynov, “Multiscale deformation of commercial titanium and alloy Ti-6Al-4V subjected to high-frequency electron beam treatment”, Fizicheskaya mezomekhanika – Physical Mesomechanics, 21:4 (2018), 45–56 | DOI

[4] V. M. Astashynski, A. Ya. Leyvi, V. V. Uglov, N. N. Cherenda, A. P. Yalovets, “Formation of metal target surface relief during the action of compression plasma flows”, Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2014, no. 6, 12–17 | DOI

[5] I. V. Borovitskaya, V. Ya. Nikulin, G. G. Bondarenko, A. B. Mikhaylova, P. V. Silin, A. I. Gaydar, V. V. Paramonova, E. N. Peregudova, “Effect of pulsed nitrogen plasma and nitrogen ion fluxes on the structure and mechanical properties of vanadium”, Metally – Russian Metallurgy, 2018, no. 2, 54–64

[6] A. M. Zhukeshov, A. T. Gabdullina, “Effect of steal surface processing by pulsed plasma fluxes on its structure and microhardness”, Poverkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya – Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 11 (2009), 95–101 | DOI

[7] S. A. Shanin, A. G. Knyazeva, “Coupled model of coating formation on a cylindrical substrate”, Journal of Applied Mechanics and Technical Physics, 55:3 (2014), 192–204 | DOI

[8] V. B. Odzhaev, V. I. Plebanovich, M. I. Tarasik, A. R. Chelyadinskiy, “About the influence of elastic stresses on the implanted boron diffusion in silicon”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Fizika – Journal of the Belarusian State University. Physics, 2017, no. 3, 88–94

[9] Fu Zhen Xuan, Shan-Shan Shao, Zhendong Wang, “Shan-Tung Tu Coupling effects on chemical stresses and external mechanical stresses on diffusion”, J. Phys. D: Appl. Physics, 42 (2009), 1–8 | DOI

[10] V. N. Demidov, A. G. Knyazeva, E. S. Il'ina, “The modeling features of diffusion processes in elastic body under particles surface treatment”, Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta. Mekhanika – Perm National Research Polytechnic University Mechanics Bulletin, 2012, no. 3, 25–49

[11] E. S. Parfenova, A. G. Knyazeva, “The initial stage of transient layer formation between film and substrate during heating by a highcurrent electron beam”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 54, 103–117 | DOI

[12] E. S. Parfenova, A. G. Knyazeva, “Nonisothermal mechanodiffusion model of the initial stage of introduction process of particles flow in a target surface”, Vychislitel'naya mekhanika sploshnykh sred – Computational Continuum Mechanics, 12:1 (2019), 36–47 | DOI

[13] H. H. Sherief, F. Haaza, H. Saleh, “The Theory of Generalized Thermoelastic Diffusion”, Int. J. Eng. Sci., 42:5–6 (2004), 591–608 | DOI

[14] “M. Aouadi”, J. Thermal Stresses, 31 (2008), 1–16 | DOI

[15] A. G. Knyazeva, “Diffusion and rheology in locally-equilibrium thermodynamics”, Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta. Mekhanika – Perm National Research Polytechnic University Mechanics Bulletin, 2005, no. 13, 45–60

[16] A. G. Knyazeva, “Nonlinear models diffusion of deformed media with diffusion”, Fizicheskaya mezomekhanika – Physical Mesomechanics, 14:6 (2011), 35–51