Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 32-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The Sieradski groups are defined by the presentation $S(m)=\langle x_1,x_2,\dots,x_m\mid x_ix_{i+1}, i=1,\dots,m\rangle$, where all subscripts are taken by $\mod m$. The generalized Sieradski groups $S(m,p,q)$ are groups with $m$-cyclic presentation $G_m(w)$, where word $w$ has a special form depending on coprime integers $p$ and $q$. We study the problem if a given presentation is geometric, i.e. it corresponds to a spine of a closed orientable $3$-manifold. It was shown by Cavicchioli, Hegenbarth, and Kim that the generalized Sieradski group presentation $S(m,p,q)$ corresponds to a spine of some $3$-manifold which we denote as $M(m,p,q)$. Moreover, $M(m,p,q)$ are $m$-fold cyclic coverings of $S^3$ branched over the torus $(p,q)$-knot. Howie and Williams proved that $M(2n,3,2)$ are $n$-fold cyclic coverings of the lens space $L(3,1)$. A. Vesnin and T. Kozlovskaya established that $M(2n,5,2)$ are $n$-fold cyclic coverings of the lens space $L(5,1)$. In this paper, we consider generalized Sieradski manifolds $M(2n,7,2)$ $n\geqslant 1$. We prove that the $n$-cyclic presentations of their groups are geometric, i.e., correspond to spines of closed connected orientable $3$-manifolds. Moreover, manifolds $M(2n,7,2)$ are the $n$-fold cyclic coverings of the lens space $L(7,1)$. For the classification some of the constructed manifolds, we use the Recognizer computer program.
Keywords: three-dimensional manifold, branched covering, cyclically presented group, Sieradski group.
Mots-clés : lens space
@article{VTGU_2019_60_a2,
     author = {T. A. Kozlovskaya},
     title = {Cyclically presented {Sieradski} groups with even number of generators and three dimensional manifolds},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {32--41},
     publisher = {mathdoc},
     number = {60},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/}
}
TY  - JOUR
AU  - T. A. Kozlovskaya
TI  - Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 32
EP  - 41
IS  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/
LA  - ru
ID  - VTGU_2019_60_a2
ER  - 
%0 Journal Article
%A T. A. Kozlovskaya
%T Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 32-41
%N 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/
%G ru
%F VTGU_2019_60_a2
T. A. Kozlovskaya. Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 32-41. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/