Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 32-41
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Sieradski groups are defined by the presentation $S(m)=\langle x_1,x_2,\dots,x_m\mid x_ix_{i+1}, i=1,\dots,m\rangle$, where all subscripts are taken by $\mod m$. The generalized Sieradski groups $S(m,p,q)$ are groups with $m$-cyclic presentation $G_m(w)$, where word $w$ has a special form depending on coprime integers $p$ and $q$. We study the problem if a given presentation is geometric, i.e. it corresponds to a spine of a closed orientable $3$-manifold. It was shown by Cavicchioli, Hegenbarth, and Kim that the generalized Sieradski group presentation $S(m,p,q)$ corresponds to a spine of some $3$-manifold which we denote as $M(m,p,q)$. Moreover, $M(m,p,q)$ are $m$-fold cyclic coverings of $S^3$ branched over the torus $(p,q)$-knot. Howie and Williams proved that $M(2n,3,2)$ are $n$-fold cyclic coverings of the lens space $L(3,1)$. A. Vesnin and T. Kozlovskaya established that $M(2n,5,2)$ are $n$-fold cyclic coverings of the lens space $L(5,1)$. In this paper, we consider generalized Sieradski manifolds $M(2n,7,2)$ $n\geqslant 1$. We prove that the $n$-cyclic presentations of their groups are geometric, i.e., correspond to spines of closed connected orientable $3$-manifolds. Moreover, manifolds $M(2n,7,2)$ are the $n$-fold cyclic coverings of the lens space $L(7,1)$. For the classification some of the constructed manifolds, we use the Recognizer computer program.
Keywords: three-dimensional manifold, branched covering, cyclically presented group, Sieradski group.
Mots-clés : lens space
@article{VTGU_2019_60_a2,
     author = {T. A. Kozlovskaya},
     title = {Cyclically presented {Sieradski} groups with even number of generators and three dimensional manifolds},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {32--41},
     year = {2019},
     number = {60},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/}
}
TY  - JOUR
AU  - T. A. Kozlovskaya
TI  - Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 32
EP  - 41
IS  - 60
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/
LA  - ru
ID  - VTGU_2019_60_a2
ER  - 
%0 Journal Article
%A T. A. Kozlovskaya
%T Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 32-41
%N 60
%U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/
%G ru
%F VTGU_2019_60_a2
T. A. Kozlovskaya. Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 32-41. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/

[1] Stallings J., “On the recursiveness of sets of presentations of 3-manifold groups”, Fundam. Math., 51 (1962/63), 191–194 | DOI | MR | Zbl

[2] Helling H., Kim A. C., Mennicke J. L., “A geometric study of Fibonacci groups”, J. Lie Theory, 8 (1998), 1–23 | MR | Zbl

[3] Cavicchioli A., Hegenbarth F., Kim A., “On cyclic branched coverings of torus knots”, J. Geometry, 64 (1999), 55–66 | DOI | MR | Zbl

[4] Dunwoody M. J., “Cyclic presentations and 3-manifolds”, Proc. Inter. Conf., Groups-Korea '94, Walter de Gruyter, Berlin–New York, 1995, 47–55 | MR | Zbl

[5] Kim A. C., “On the Fibonacci group and related topics”, Proc. conf. algebra (1991, Barnaul, Russia), Contemp. Math., 184, Am. Math. Soc., Providence, RI, 1995, 231–235 | DOI | MR | Zbl

[6] Vesnin A.Yu., Kim Ann Chi., “Fractional Fibonacci groups and manifolds”, Siberian Math. J., 39:4 (1998), 655–664 | DOI | MR | Zbl

[7] Kim A. C., Kim Y., Vesnin A., “On a class of cyclically presented groups”, Proc. Intern. Conf. Groups-Korea '98, Walter de Gruyter, Berlin–New York, 2000, 211–220 | MR | Zbl

[8] Hilden H., Lozano M., Montesinos-Amilibia J., “The arithmeticity of the figure eight knot orbifolds”, Topology '90, Ohio State Univ. Math. Res. Inst. Publ., 1, Walter de Gruyter, Berlin, 1992, 169–183 | MR

[9] Johnson D., Wamsley J., Wfight D., “The Fibonacci Groups”, Proc. London Math. Soc., III. Ser., 29:4 (1974), 577–592 | DOI | MR | Zbl

[10] Maclachlan C., Reid A. W., “Generalised Fibonacci manifolds”, Transform. Groups, 2:2 (1997), 165–182 | DOI | MR | Zbl

[11] Gfasselli L., Mulazzani M., “Genus one 1-bridge knots and Dunwoody manifolds”, Forum Mathematicum, 13:3 (2001), 379–397 | MR

[12] Siemdski A. J., “Combinatorial squashings, 3-manifolds, and the third homology of groups”, Invent. Math., 84 (1986), 121–139 | DOI | MR

[13] Howie J., Williams G., “Fibonacci type presentations and 3-manifolds”, Topology Appl., 215 (2017), 24–34 | DOI | MR | Zbl

[14] Kozlovskaya T., Vesnin A., “Brieskorn manifolds, generated Sieradski groups, and coverings of lens space”, Proceedings of the Steklov Institute of Mathematics, 304, suppl. 1 (2019), S175–S185 | DOI | MR | Zbl

[15] Thfee-manifold Recognizer. The computer program developed by the research group of S. Matveev in the department of computer topology and algebra of Chelyabinsk State University, http://matlas.math.csu.ru

[16] Seifekt H., Weber C., “Die beiden Dodekaedraume”, Math. Z., 37 (1933), 237–253 | DOI | MR

[17] G. Seifert, V. Threlfall, A Textbook of Topology, Pure and Applied Mathematics, 89, Academic Press, New York, 1980 | MR | Zbl

[18] Mulazzani M., “Cyclic presentation of groups and cyclic branched covering of (1, 1)-knots”, Bull. Korean Math. Soc., 40:1 (2003), 101–108 | DOI | MR | Zbl

[19] Ozsvath P., Szabo Z., “Heegaard diagrams and holomorphic disks”, International Mathematical Series, 3 (2004), 301–348 | DOI | MR | Zbl

[20] Singef J., “Three-dimensional manifolds and their Heegaard diagrams”, Trans. Amer. Math. Soc., 35:1 (1933), 88–111 | DOI | MR