Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 32-41
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Sieradski groups are defined by the presentation
$S(m)=\langle x_1,x_2,\dots,x_m\mid x_ix_{i+1}, i=1,\dots,m\rangle$, where all subscripts are taken by $\mod m$. The
generalized Sieradski groups $S(m,p,q)$ are groups with $m$-cyclic presentation $G_m(w)$, where
word $w$ has a special form depending on coprime integers $p$ and $q$. We study the problem if a
given presentation is geometric, i.e. it corresponds to a spine of a closed orientable $3$-manifold. It
was shown by Cavicchioli, Hegenbarth, and Kim that the generalized Sieradski group
presentation $S(m,p,q)$ corresponds to a spine of some $3$-manifold which we denote as
$M(m,p,q)$. Moreover, $M(m,p,q)$ are $m$-fold cyclic coverings of $S^3$ branched over the torus 
$(p,q)$-knot. Howie and Williams proved that $M(2n,3,2)$ are $n$-fold cyclic coverings of the lens
space $L(3,1)$. A. Vesnin and T. Kozlovskaya established that $M(2n,5,2)$ are $n$-fold cyclic
coverings of the lens space $L(5,1)$. In this paper, we consider generalized Sieradski manifolds
$M(2n,7,2)$ $n\geqslant 1$. We prove that the $n$-cyclic presentations of their groups are geometric, i.e.,
correspond to spines of closed connected orientable $3$-manifolds. Moreover, manifolds
$M(2n,7,2)$ are the $n$-fold cyclic coverings of the lens space $L(7,1)$. For the classification some
of the constructed manifolds, we use the Recognizer computer program.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
three-dimensional manifold, branched covering, cyclically presented group, Sieradski group.
Mots-clés : lens space
                    
                  
                
                
                Mots-clés : lens space
@article{VTGU_2019_60_a2,
     author = {T. A. Kozlovskaya},
     title = {Cyclically presented {Sieradski} groups with even number of generators and three dimensional manifolds},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {32--41},
     publisher = {mathdoc},
     number = {60},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/}
}
                      
                      
                    TY - JOUR AU - T. A. Kozlovskaya TI - Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 32 EP - 41 IS - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/ LA - ru ID - VTGU_2019_60_a2 ER -
%0 Journal Article %A T. A. Kozlovskaya %T Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 32-41 %N 60 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/ %G ru %F VTGU_2019_60_a2
T. A. Kozlovskaya. Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 32-41. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a2/
