@article{VTGU_2019_60_a1,
author = {Ivanov D.Yu.},
title = {Solution of boundary problems for a two-dimensional elliptic operatordifferential equation in an abstract {Hilbert} space using the method of boundary integral equations},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {11--31},
year = {2019},
number = {60},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_60_a1/}
}
TY - JOUR AU - Ivanov D.Yu. TI - Solution of boundary problems for a two-dimensional elliptic operatordifferential equation in an abstract Hilbert space using the method of boundary integral equations JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 11 EP - 31 IS - 60 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_60_a1/ LA - ru ID - VTGU_2019_60_a1 ER -
%0 Journal Article %A Ivanov D.Yu. %T Solution of boundary problems for a two-dimensional elliptic operatordifferential equation in an abstract Hilbert space using the method of boundary integral equations %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 11-31 %N 60 %U http://geodesic.mathdoc.fr/item/VTGU_2019_60_a1/ %G ru %F VTGU_2019_60_a1
Ivanov D.Yu. Solution of boundary problems for a two-dimensional elliptic operatordifferential equation in an abstract Hilbert space using the method of boundary integral equations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 60 (2019), pp. 11-31. http://geodesic.mathdoc.fr/item/VTGU_2019_60_a1/
[1] G. N. Polozhii, Equations of mathematical physics, Vysshaya Shkola, M., 1964, 560 pp. | MR
[2] S. G. Krein, Linear differential equations in Banach space, American Math. Soc., Providence, 1971, 390 pp. | MR
[3] V. K. Ivanov, I. V. Mel'nikova, A. I. Filinkov, Operator-differential equations and ill-posed problems, Nauka, M., 1995, 176 pp.
[4] S. Yakubov, Ya. Yakubov, Differential-operator equations. Ordinary and partial differential equations, Chapman and Hall/CRC, Boca Raton, 2000, 541 pp. | MR | Zbl
[5] V. B. Shakhmurov, “Maximal regular abstract elliptic equations and applications”, Siberian Mathematical Journal, 51:5 (2010), 935–948 | DOI | MR | Zbl
[6] V. Shakhmurov, Singular degenerate problems and application, arXiv: (submitted on 5 July 2017) 1707.01376
[7] V. Shakhmurov, Regularity properties of singular degenerate abstract differential equations and applications [Elektronnyi resurs], arXiv: (submitted on 5 July 2017) 1707.01771 | MR
[8] D. Y. Ivanov, Differential Equations, 46:8 (2010), 1104–1113 | DOI | MR | Zbl
[9] D. Yu. Ivanov, R. I. Dzerzhinskiy, “Solution of the Robin problems for two-dimensional differential-operator equations describing the thermal conductivity in a straight cylinder”, Scientific and Technical Journal of the Volga Region, 2016, no. 1, 15–17
[10] D. Yu. Ivanov, “Using of vector potentials for solving the two-dimensional Robin problem describing the heat conductivity in a straight cylinder”, Actual Problems of Humanitarian and Natural Sciences, 2016, no. 3-1, 8–14
[11] D. Yu. Ivanov, “Stable solvability in spaces of differentiable functions of some twodimensional integral equations of heat conduction with an operator-semigroup kernel”, Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 6, 33–45 | DOI
[12] Sz. Nagy B., C. Foias, Harmonic analysis of operators on Hilbert space, Akademiai Kiado, Budapest, Amsterdam–London, 1970, 389 pp. | MR | MR | Zbl
[13] S. G. Mikhlin, Mathematical physics: an advanced course, North-Holland Pub. Co., Amserdam, 1970, 561 pp. | MR | MR | Zbl
[14] N. Dunford, J. T. Schwartz, Linear operators, v. II, Spectral theory, Self adjoint operators in Hilbert space, Interscience Publishers, New York–London, 1963, 1065 pp. | MR | Zbl
[15] N. Dunford, J. T. Schwartz, Linear operators, v. I, General theory, Interscience Publishers, New York–London, 1958, 858 pp. | MR | Zbl
[16] T. Kato, Perturbation theory for linear operators, Springer, Berlin–Heidelberg–New York, 1976, 620 pp. | MR | Zbl
[17] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. 1, Functional Analysis, Academic Press, New York–London, 1972, 325 pp. | MR | Zbl
[18] V. I. Smirnov, A course of higher mathematics, v. 4, Integral equations and partial differential equations, Pergamon Press, Oxford–New-York, 1964, 811 pp. | MR | MR
[19] D. Yu. Ivanov, “Validation of a numerical algorithm for solving inverse boundary value problems for heat equation that takes into account the semigroup symmetry”, Computational Mathematics and Mathematical Physics, 38:12 (1998), 1948–1961 | MR | Zbl