Mots-clés : singular perturbation
@article{VTGU_2019_59_a2,
author = {D. A. Tursunov},
title = {Asymptotics of the solution of the singularly perturbed {Cauchy} problem in the case of a change in the stability, when the eigenvalues have poles},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {16--28},
year = {2019},
number = {59},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2019_59_a2/}
}
TY - JOUR AU - D. A. Tursunov TI - Asymptotics of the solution of the singularly perturbed Cauchy problem in the case of a change in the stability, when the eigenvalues have poles JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 16 EP - 28 IS - 59 UR - http://geodesic.mathdoc.fr/item/VTGU_2019_59_a2/ LA - ru ID - VTGU_2019_59_a2 ER -
%0 Journal Article %A D. A. Tursunov %T Asymptotics of the solution of the singularly perturbed Cauchy problem in the case of a change in the stability, when the eigenvalues have poles %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 16-28 %N 59 %U http://geodesic.mathdoc.fr/item/VTGU_2019_59_a2/ %G ru %F VTGU_2019_59_a2
D. A. Tursunov. Asymptotics of the solution of the singularly perturbed Cauchy problem in the case of a change in the stability, when the eigenvalues have poles. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 59 (2019), pp. 16-28. http://geodesic.mathdoc.fr/item/VTGU_2019_59_a2/
[1] Tikhonov A.N., “On the dependence of the solutions of differential equations on a small parameter”, Mat. Sb. (N.S.), 22 (64) (1948), 193–204 | Zbl
[2] Tikhonov A.N., “Systems of differential equations containing small parameters at the derivatives”, Mat. Sb. (N.S.), 31(73):3 (1952), 575–586 | Zbl
[3] Shishkova M.A., “Consideration of a system of differential equations with a small parameter at higher derivatives”, Dokl. AN SSSR, 209:3 (1973), 576–579 | Zbl
[4] Rivkind V. Ya., Novikov S. P., Petkov V. M., Myasnikov V. P., Fedoryuk M. V., Kucherenko V. V., Davydov A. A., Neishtadt A. I., Kruzhkov S. N., Molchanov S. A., Ruzmaikin A. A., Sokolov D. D., Sukhov Yu. M., Shukhov A. G., Vainberg B. R., Bakhtin V. I., Vainshtein A. G., Shapiro B. Z., Kondrat'ev V. A., Oleinik O. A., Vishik M. I., Kuksin S.B., Korolev A. G., Ilyashenko Yu. S., “Sessions of the Petrovskii seminar on differential equations and mathemathical problems of physics”, Uspekhi Mat. Nauk, 40:5(245) (1985), 295–307
[5] Neishtadt A.I., “Prolongation of the loss of stability in the case of dynamic bifurcations. I”, Differ. Uravn., 23:12 (1987), 2060–2067
[6] Neishtadt A.I., “Prolongation of the loss of stability in the case of dynamic bifurcations. II”, Differ. Uravn., 24:2 (1988), 171–176 | MR | Zbl
[7] A. I. Neishtadt, V. V. Sidorenko, “The Delayed Stability Loss in Ziegler's System”, Keldysh Institute preprints, 1995, 056
[8] Neishtadt A.I., “Sidorenko V.V. Stability loss delay in a Ziegler systemi”, J. App. Maths. Mechs., 61:1 (1997), 15–25 | DOI | MR
[9] Ziegler H., “Die Stabilitatskriterien der Elastomechanik”, Ing. Archi., 20:1 (1952), 49–56 | DOI | MR | Zbl
[10] Arnold V.I., Afraimovich V.S., Ilyashenko Yu.S., Shilnikov L.P., “Bifurcation theory”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 5, VINITI, M., 1986, 5–218
[11] Lomov S.A., Safonov V.F., “Asymptotic integration of linear problems in the region of instability”, Izv. AN KirgSSR, 1983, no. 3, 14–29
[12] Arnold V.I., The theory of catastrophes, Nauka, M., 1990, 128 pp.
[13] Tursunov D.A., Tursunov E.A., “Asymptotic expansion of solutions of singularly perturbed problems when the stability condition is violated”, Estestvennye i tekhnicheskie nauki, 2007, no. 3(29), 12–16
[14] Tursunov D.A., “Asymptotics of the Cauchy problem solution in the case of instability of a stationary point in the plane of “rapid motions””, Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 54, 46–57 | DOI
[15] Alybaev K., Murzabaeva A., “Singularly perturbed first-order equations in complex domains that lose their uniqueness under degeneracy”, AIP Conference Proceedings, 1997, no. 1, 2018 | DOI
[16] Taliev A.A., “Stability loss protraction for singularly perturbed equations with continuous right-hand sides”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 4 (30), 36–42
[17] Lavrent'ev M.A., Shabat B.F., Methods of the theory of a function of a complex variable, Nauka, M., 1973, 739 pp.