On the class of two-dimensional geodesic curves in the field of the gravity force
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, without using methods of variational calculus, the problem of finding a geodesic in a curved space with respect to gravitational and dissipative forces was solved. Solving it, we use the most convenient polar coordinates $r, \varphi$. The basic assumption relies on the fact that dynamical motion equations written in curvilinear coordinates in which the Riemann curvature $R$ is different from zero rather strongly differ from similar equations in the case of a flat space. To obtain the required equation of a geodesic arc, a contravariant vector of the velocity $\nu^i=\frac{dx^i}{dt}$ was introduced. For this vector, with regard to all active forces, the following equation was solved: $$ \frac{d\nu^i}{dt}+\Gamma_{kl}^i\nu^k\nu^l=g^i+\frac{F^i}m, $$ $g^i$ are acceleration components of the gravitational force of the two-dimensional $r-\varphi$ space, and the dissipative force is $$ F^i=k_1^{ik}N^k+k_2\nu^i, $$ $k_1^{ik}$ are tensor components of the dry friction, $k_2$ is the coefficient of the viscous friction, and $N^i$ are the force components. Provided that the scalar curvature of Riemann is different from zero, $$ R=\frac{\partial\Gamma^r_{\varphi\varphi}}{\partial r}-\frac{\partial\Gamma^{\varphi}_{r\varphi}}{\partial r}+\Gamma^r_{\varphi\varphi}\Gamma^{\varphi}_{r\varphi}-\Gamma^{\varphi}_{r\varphi}\Gamma^r_{\varphi\varphi}=\frac2{r^2}\ne0, $$ a nonlinear system of differential equations governing the required geodesic was obtained in the polar coordinates $r$ and $\varphi$: $$ \begin{cases} \ddot{r}-r\dot{\varphi}^2=g\sin\varphi+\frac{F_{\mathrm{fr}}}{m}\cos(\alpha-\varphi),\\ r\ddot{\varphi}+3\dot{r}\dot{\varphi}=-g\cos\varphi-\frac{F_{\mathrm{fr}}}{m}\sin(\alpha-\varphi), \end{cases} $$ where $r=|\mathbf{r}|=|\mathbf{i}x+\mathbf{j}y|$ is the length of the radius-vector drawn from the origin of coordinates to the observation point $M$ lying on the geodesic line $y=y(x)$, $\varphi$ is the polar angle of the reference point, and $\alpha$ is the acute angle between the tangent drawn to the point of $M$ and to axis of abscissas. The analytical and numerical solutions of this system in the absence of the resistance forces, i.e. $F_{fr}=0$, showed the great difference between the found geodesic and the parabola typical for the case of free fall of bodies in the gravitational field in Euclidean space.
Keywords: geodesic, Riemann tensor
Mots-clés : dynamical equations.
@article{VTGU_2019_58_a0,
     author = {S. O. Gladkov and S. B. Bogdanova},
     title = {On the class of two-dimensional geodesic curves in the field of the gravity force},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--13},
     year = {2019},
     number = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a0/}
}
TY  - JOUR
AU  - S. O. Gladkov
AU  - S. B. Bogdanova
TI  - On the class of two-dimensional geodesic curves in the field of the gravity force
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2019
SP  - 5
EP  - 13
IS  - 58
UR  - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a0/
LA  - ru
ID  - VTGU_2019_58_a0
ER  - 
%0 Journal Article
%A S. O. Gladkov
%A S. B. Bogdanova
%T On the class of two-dimensional geodesic curves in the field of the gravity force
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2019
%P 5-13
%N 58
%U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a0/
%G ru
%F VTGU_2019_58_a0
S. O. Gladkov; S. B. Bogdanova. On the class of two-dimensional geodesic curves in the field of the gravity force. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 5-13. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a0/

[1] Gladkov S.O., Bogdanova S.B., “Geometric phase transition in the problem of brachistochrone”, Memoirs of the Faculty of Physics, Moscow State University, 2016, no. 1, 161101-1-5

[2] Gladkov S.O., “On the trajectory of a moving body coming into liquid at an arbitrary angle”, Memoirs of the Faculty of Physics, Moscow State University, 2016, no. 4, 164101-1-5

[3] Gladkov S.O., Bogdanova S.B., “Generalized dynamic equations of the plane curvilinear motion of a material body on a trench with account of friction forces (their numerical analysis in some special cases”, Memoirs of the Faculty of Physics, Moscow State University, 2017, no. 1, 171101-1-5

[4] McConnell J., Application of tensor analysis, Dover Publications, INC., New York, 1957 | MR | Zbl

[5] Landau L., Lifshitz E., Field theory, Fizmatlit, M., 2003