On the class of two-dimensional geodesic curves in the field of the gravity force
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 5-13
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, without using methods of variational calculus, the problem of finding a geodesic
in a curved space with respect to gravitational and dissipative forces was solved. Solving it, we
use the most convenient polar coordinates $r, \varphi$. The basic assumption relies on the fact that dynamical motion equations written in curvilinear coordinates in which the Riemann curvature $R$ is different from zero rather strongly differ from similar equations in the case of a flat space.
To obtain the required equation of a geodesic arc, a contravariant vector of the velocity
$\nu^i=\frac{dx^i}{dt}$ was introduced. For this vector, with regard to all active forces, the following equation
was solved:
$$
\frac{d\nu^i}{dt}+\Gamma_{kl}^i\nu^k\nu^l=g^i+\frac{F^i}m,
$$
$g^i$ are acceleration components of the gravitational force of the two-dimensional $r-\varphi$ space, and
the dissipative force is
$$
F^i=k_1^{ik}N^k+k_2\nu^i,
$$
$k_1^{ik}$ are tensor components of the dry friction, $k_2$ is the coefficient of the viscous friction, and
$N^i$ are the force components.
Provided that the scalar curvature of Riemann is different from zero,
$$
R=\frac{\partial\Gamma^r_{\varphi\varphi}}{\partial r}-\frac{\partial\Gamma^{\varphi}_{r\varphi}}{\partial r}+\Gamma^r_{\varphi\varphi}\Gamma^{\varphi}_{r\varphi}-\Gamma^{\varphi}_{r\varphi}\Gamma^r_{\varphi\varphi}=\frac2{r^2}\ne0,
$$
a nonlinear system of differential equations governing the required geodesic was obtained in the
polar coordinates $r$ and $\varphi$:
$$
\begin{cases}
\ddot{r}-r\dot{\varphi}^2=g\sin\varphi+\frac{F_{\mathrm{fr}}}{m}\cos(\alpha-\varphi),\\
r\ddot{\varphi}+3\dot{r}\dot{\varphi}=-g\cos\varphi-\frac{F_{\mathrm{fr}}}{m}\sin(\alpha-\varphi),
\end{cases}
$$
where $r=|\mathbf{r}|=|\mathbf{i}x+\mathbf{j}y|$ is the length of the radius-vector drawn from the origin of coordinates to
the observation point $M$ lying on the geodesic line $y=y(x)$, $\varphi$ is the polar angle of the reference point, and $\alpha$ is the acute angle between the tangent drawn to the point of $M$ and to axis of abscissas.
The analytical and numerical solutions of this system in the absence of the resistance forces,
i.e. $F_{fr}=0$, showed the great difference between the found geodesic and the parabola typical for
the case of free fall of bodies in the gravitational field in Euclidean space.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
geodesic, Riemann tensor
Mots-clés : dynamical equations.
                    
                  
                
                
                Mots-clés : dynamical equations.
@article{VTGU_2019_58_a0,
     author = {S. O. Gladkov and S. B. Bogdanova},
     title = {On the class of two-dimensional geodesic curves in the field of the gravity force},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--13},
     publisher = {mathdoc},
     number = {58},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2019_58_a0/}
}
                      
                      
                    TY - JOUR AU - S. O. Gladkov AU - S. B. Bogdanova TI - On the class of two-dimensional geodesic curves in the field of the gravity force JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2019 SP - 5 EP - 13 IS - 58 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2019_58_a0/ LA - ru ID - VTGU_2019_58_a0 ER -
%0 Journal Article %A S. O. Gladkov %A S. B. Bogdanova %T On the class of two-dimensional geodesic curves in the field of the gravity force %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2019 %P 5-13 %N 58 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2019_58_a0/ %G ru %F VTGU_2019_58_a0
S. O. Gladkov; S. B. Bogdanova. On the class of two-dimensional geodesic curves in the field of the gravity force. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 58 (2019), pp. 5-13. http://geodesic.mathdoc.fr/item/VTGU_2019_58_a0/
