The grothendieck group $K_0$ of an arbitrary csp-ring
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 38-44
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Fix an infinite set $L$ of primes. For every $p\in L$, let $R_p$ be either the ring of $p$-adic integers or the residue class ring $\mathbf{Z}/p^k\mathbf{Z}$ (the number $k>0$ may depend on $p$). Define 
$$
K=\prod_{p\in L} R_p\text{ and } T=\bigoplus_{p\in L} R_p\subset K;
$$ 
it is clear that $T$ is an ideal of the ring $K$. By a csp-ring we mean any subring $R$ of the ring $K$ such that $T\subset R$ and the quotient ring $R/T$ is a field. The symbol $K_0(R)$ denotes the Grothendieck group of the monoid of isomorphism classes of finitely generated projective modules over $R$ (with direct sum as the operation). 
We find necessary and sufficient conditions for a module over $R$ to be a finitely generated projective module. These conditions enable us to prove the following theorem. 
Theorem 7. For every csp-ring $R$, the Grothendieck group $K_0(R)$ is a free group of countable rank. 
If we have two csp-rings $R$ and $S$, then every ring homomorphism $R\to S$ induces a group homomorphism $K_0(R)\to K_0(S)$. We describe this group homomorphism for arbitrary csp-rings $R$ and $S$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
csp-ring, projective module, Grothendieck group.
                    
                  
                
                
                @article{VTGU_2018_55_a3,
     author = {E. A. Timoshenko},
     title = {The grothendieck group $K_0$ of an arbitrary csp-ring},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {38--44},
     publisher = {mathdoc},
     number = {55},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a3/}
}
                      
                      
                    TY - JOUR AU - E. A. Timoshenko TI - The grothendieck group $K_0$ of an arbitrary csp-ring JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2018 SP - 38 EP - 44 IS - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a3/ LA - ru ID - VTGU_2018_55_a3 ER -
E. A. Timoshenko. The grothendieck group $K_0$ of an arbitrary csp-ring. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 38-44. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a3/
