Keywords: involution, center of a group, normal subgroup.
@article{VTGU_2018_55_a0,
author = {A. I. Zabarina and E. A. Fomina},
title = {On the set $K_3(G)$ of finite groups elements commuting exactly with three elements},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--11},
year = {2018},
number = {55},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a0/}
}
TY - JOUR AU - A. I. Zabarina AU - E. A. Fomina TI - On the set $K_3(G)$ of finite groups elements commuting exactly with three elements JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2018 SP - 5 EP - 11 IS - 55 UR - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a0/ LA - ru ID - VTGU_2018_55_a0 ER -
%0 Journal Article %A A. I. Zabarina %A E. A. Fomina %T On the set $K_3(G)$ of finite groups elements commuting exactly with three elements %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2018 %P 5-11 %N 55 %U http://geodesic.mathdoc.fr/item/VTGU_2018_55_a0/ %G ru %F VTGU_2018_55_a0
A. I. Zabarina; E. A. Fomina. On the set $K_3(G)$ of finite groups elements commuting exactly with three elements. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 5-11. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a0/
[1] Gorenstein D., Finite Simple Groups: An Introduction to Their Classification, Springer Science Business Media, New York, 1982, 333 pp. | MR
[2] Zabarina A. I., Guselnikova U. A., Fomina E. A., “On commuting elements of a group”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika - Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 6(38), 27–32 | DOI
[3] Belonogov V. A., Fomin A. N., Matrix representations in the theory of finite groups, Nauka, M., 1976, 126 pp.
[4] Kargapolov M. I., Merzlyakov Y. I., Foundations of the group theory, Nauka, M., 1982, 288 pp.
[5] Hall M., The Theory of Groups, The Macmillan Company, New York, 1959, 434 pp. | MR | Zbl
[6] Belonogov V. A., Problem book on the group theory, Nauka, M., 2000, 240 pp.
[7] Kurosh A. G., The Theory of Groups, Chelsea Publishing Company, New York, 1960, 272 pp. | MR