On the set $K_3(G)$ of finite groups elements commuting exactly with three elements
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 5-11
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be an arbitrary finite multiplicative group, $|G| = n$. We define the set $K_3(G)$ as follows: 
$$
K_3(G) = \{x \in G \mid |C_G(x)| = 3\} = \{x \in G \mid C_G(x) = \{e, x, x^2\}\}.
$$
It follows from the definition of $K_3(G)$ that 
A) if $x \in K_3(G)$, then the order of $x$ is $3$ ($o(x) = 3$); 
B) if $x \in K_3(G)$, then $x^2 \in K_3(G)$. 
The following properties of the set $K_3(G)$ have been proved. 
Proposition 1. If $K_3(G) \ne\varnothing$, then $|G| \,\vdots\, 3$ and $|G| \not\,\vdots\, 9$. 
Proposition 2. If $x \in K_3(G)$, then $x^g \in K_3(G)$ for each $g \in G$. 
Proposition 3. Let $K_3(G) \ne\varnothing$, $x \in G$ and $o(x) = 3$. Then $x \in K_3(G)$. 
Proposition 4. Let $|G| = n; K_3(G) \ne\varnothing$. Then $|K_3(G)| \in \left\{\frac n3;\frac{2n}3\right\}$.
Lemma 5. Let $a, g \in G$, $o(a) = 3$; $g^{-1}ag = a^2$. Then $o(g)\,\vdots\, 2$. 
Proposition 6. 1) Let $o(a) = 3$ and $g^{-1}ag = a^2$. Then $|G|\,\vdots\, 6$. 
2) If $|G| = 2k + 1$, then $K_3(G) = \varnothing$ or $|K_3 (G)| =\frac{2|G|}3$. 
Theorem 7. Let $G$ be a finite simple group, $|G| = n$, $K_3(G) \ne\varnothing$. Then all involutions of the group $G$ form a class of conjugate elements.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
group
Keywords: involution, center of a group, normal subgroup.
                    
                  
                
                
                Keywords: involution, center of a group, normal subgroup.
@article{VTGU_2018_55_a0,
     author = {A. I. Zabarina and E. A. Fomina},
     title = {On the set $K_3(G)$ of finite groups elements commuting exactly with three elements},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--11},
     publisher = {mathdoc},
     number = {55},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_55_a0/}
}
                      
                      
                    TY - JOUR AU - A. I. Zabarina AU - E. A. Fomina TI - On the set $K_3(G)$ of finite groups elements commuting exactly with three elements JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2018 SP - 5 EP - 11 IS - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2018_55_a0/ LA - ru ID - VTGU_2018_55_a0 ER -
%0 Journal Article %A A. I. Zabarina %A E. A. Fomina %T On the set $K_3(G)$ of finite groups elements commuting exactly with three elements %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2018 %P 5-11 %N 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2018_55_a0/ %G ru %F VTGU_2018_55_a0
A. I. Zabarina; E. A. Fomina. On the set $K_3(G)$ of finite groups elements commuting exactly with three elements. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 55 (2018), pp. 5-11. http://geodesic.mathdoc.fr/item/VTGU_2018_55_a0/
