On optimality of singular controls in an optimal control problem
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 54 (2018), pp. 17-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, a Moskalenko type optimal control problem is considered. We consider the optimal control problem of minimizing the terminal type functional 
$$
\mathrm{S(u,v)}=\varphi(y(x_1))+\int_{x_0}^{x_1}G(x,z(t_1,x))dx,
$$
under constraints
\begin{gather*}
u(t,x)\in U\subset R^r, \quad (t,x)\in D=[t_0,t_1]\times[x_0,x_1],\\
v(x)\in V\subset R^q,\quad x\in X=[x_0,x_1],\\
z_t(t,x)=f(t,x,z(t,x),u(t,x)),\quad (t,x)\in D,\\
z(t_0,x)=y(x),\quad x\in X,\\
y(x_0)=y_0.
\end{gather*} Here, $f (t,x,z,u)$ ($g (x,y,v)$) is an $n$-dimensional vector function which is continuous on the set of variables, together with partial derivatives with respect to $z (y)$ up to second order, $t_0, t_1, x_0, x_1$ ($t_0$, $x_0$) are given, $\varphi(y)$ ($G(x,z)$) is a given twice continuously differentiable with respect to $y(z)$ scalar function, $U (V)$ is a given nonempty bounded set, and $u(t, x)$ is an $r$-dimensional control vector function piecewise continuous with respect to $t$ and continuous with respect to $x$, $v(x)$ is a $q$-dimensional piecewise continuous vector of control actions. 
The necessary optimality conditions for singular controls in the sense of the Pontryagin maximum principle have been obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Pontryagin maximum principle, necessary condition for optimality of singular controls
Mots-clés : formula of increment.
                    
                  
                
                
                Mots-clés : formula of increment.
@article{VTGU_2018_54_a1,
     author = {K. B. Mansimov and Sh. M. Rasulova},
     title = {On optimality of singular controls in an optimal control problem},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {17--33},
     publisher = {mathdoc},
     number = {54},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_54_a1/}
}
                      
                      
                    TY - JOUR AU - K. B. Mansimov AU - Sh. M. Rasulova TI - On optimality of singular controls in an optimal control problem JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2018 SP - 17 EP - 33 IS - 54 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2018_54_a1/ LA - ru ID - VTGU_2018_54_a1 ER -
%0 Journal Article %A K. B. Mansimov %A Sh. M. Rasulova %T On optimality of singular controls in an optimal control problem %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2018 %P 17-33 %N 54 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2018_54_a1/ %G ru %F VTGU_2018_54_a1
K. B. Mansimov; Sh. M. Rasulova. On optimality of singular controls in an optimal control problem. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 54 (2018), pp. 17-33. http://geodesic.mathdoc.fr/item/VTGU_2018_54_a1/
