Solution of nonlinear hyperbolic equations by an approximate analytical method
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 51 (2018), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a method for solving the mixed problem for a hyperbolic equation with power nonlinearity. The first step of the method is reduction to the problem for the loaded equation containing the integral of a natural degree of the modulus of the unknown function. This integral expresses the norm of the unknown function in the corresponding Lebesgue space. Selection of constants of an a priori estimate allows us to linearize the loaded equation. A formula expressing the solution of the loaded equation by the solution of the ordinary differential equation associated with it is obtained. Approximation to the solution of the nonlinear equation is performed by means of an iterative process of solving a sequence of nonlinear problems.
Keywords: nonlinear partial differential equations, loaded partial differential equations, a priori estimates, approximate solutions.
@article{VTGU_2018_51_a0,
     author = {O. L. Boziev},
     title = {Solution of nonlinear hyperbolic equations by an approximate analytical method},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--14},
     publisher = {mathdoc},
     number = {51},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_51_a0/}
}
TY  - JOUR
AU  - O. L. Boziev
TI  - Solution of nonlinear hyperbolic equations by an approximate analytical method
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 5
EP  - 14
IS  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_51_a0/
LA  - ru
ID  - VTGU_2018_51_a0
ER  - 
%0 Journal Article
%A O. L. Boziev
%T Solution of nonlinear hyperbolic equations by an approximate analytical method
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 5-14
%N 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2018_51_a0/
%G ru
%F VTGU_2018_51_a0
O. L. Boziev. Solution of nonlinear hyperbolic equations by an approximate analytical method. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 51 (2018), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2018_51_a0/