Numerical modeling of the interaction between nutrient–phytoplankton–zooplankton–detritus system components during the spring thermal bar
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 112-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a nonhydrostatic 2.5D numerical model for simulating the hydrobiological processes during the spring riverine thermal bar in Kamloops Lake (British Columbia, Canada) is described. A thermal bar is a narrow zone in a lake where the water, which has a maximum density, sinks from the surface to the bottom. Numerical modeling of the dynamics of plankton ecosystems is implemented using the nutrient–phytoplankton–zooplankton–detritus model of Parker (1991). The hydrodynamic model, which takes into account an effect of the Coriolis force, is written in the Boussinesq approximation with the continuity, momentum, energy, and salinity equations. The data obtained in numerical experiments show a good agreement with that of Holland et al. (2003). Simulation results demonstrate that the maximum concentrations of phytoplankton are in the thermoactive (the inshore side of a thermal bar) region of the lake. Calculations under variable temperature conditions of the Thompson River show that the warm river waters facilitate a rapid growth of the phytoplankton and leads to a significant reduction of the nutrient in this area. However, these thermal boundary conditions have a little impact on the changes in zooplankton and detritus biomass.
Keywords: plankton, thermal bar, mathematical model, numerical experiment, Kamloops Lake.
@article{VTGU_2017_50_a9,
     author = {B. O. Tsydenov},
     title = {Numerical modeling of the interaction between nutrient{\textendash}phytoplankton{\textendash}zooplankton{\textendash}detritus system components during the spring thermal bar},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {112--121},
     year = {2017},
     number = {50},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a9/}
}
TY  - JOUR
AU  - B. O. Tsydenov
TI  - Numerical modeling of the interaction between nutrient–phytoplankton–zooplankton–detritus system components during the spring thermal bar
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 112
EP  - 121
IS  - 50
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a9/
LA  - ru
ID  - VTGU_2017_50_a9
ER  - 
%0 Journal Article
%A B. O. Tsydenov
%T Numerical modeling of the interaction between nutrient–phytoplankton–zooplankton–detritus system components during the spring thermal bar
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 112-121
%N 50
%U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a9/
%G ru
%F VTGU_2017_50_a9
B. O. Tsydenov. Numerical modeling of the interaction between nutrient–phytoplankton–zooplankton–detritus system components during the spring thermal bar. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 112-121. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a9/

[1] Blokhina N. S., Pokazeev K. V., “A unique natural phenomenon is the thermal bar”, Zemlya i Vselennaya, 2015, no. 6, 78–88

[2] Mortimer C. H., “Lake hydrodynamics”, Mitteilugen Int. Ver. Limnol., 20 (1974), 124–197

[3] Blokhina N. S., Ordanovich A. E., Savel'eva O. S., “Model of Formation and Development of Spring Thermal Bar”, Water Resources, 28:2 (2001), 201–204 | DOI

[4] Holland P. R., Kay A., Botte V., “A numerical study of the dynamics of the riverine thermal bar in a deep lake”, Environmental Fluid Mechanics, 1:3 (2001), 311–332 | DOI

[5] Bocharov O. B., Ovchinnikova T. E., “On the thermo-gravity convection in the near-shore zone of a deep lake in the spring warming period”, Vychislitelnye tekhnologii, 3:4 (1998), 3–12

[6] Kvon V. I., Kvon D. V., “Numerical analysis of a deep penetration mechanism of surface waters during the spring-summer thermal bar”, Vychislitelnye tekhnologii, 2:5 (1997), 46–56 | Zbl

[7] Farrow D. E., “A numerical model of the hydrodynamics of the thermal bar”, J. Fluid Mech., 303 (1995), 279–295 | DOI | MR | Zbl

[8] Holland P. R., Kay A., Botte V., “Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake”, J. Mar. Syst., 43:1–2 (2003), 61–81 | DOI

[9] Malm J., “Spring circulation associated with the thermal bar in large temperate lakes”, Nordic Hydrology, 26:4–5 (1995), 331–358

[10] Tsvetova E. A., “Effect of the Coriolis force on convection in a deep lake: numerical experiment”, J. Appl. Mech. Tech. Phys., 39:4 (1998), 593–599 | DOI | Zbl

[11] Tsvetova E. A., “Mathematical modelling of Lake Baikal hydrodynamics”, Hydrobiologia, 407 (1999), 37–43 | DOI

[12] Demchenko N. Yu., Chubarenko I. P., “Horizontal exchange across the thermal bar front: laboratory and numerical modeling”, Water Quality Res. J. Can., 47:3–4 (2012), 436–450 | DOI

[13] Tsvetova E. A., “Numerical modelling of hydrodynamic processes responsible for the propagation of contaminants in a deep basin”, Vychislitelnye tekhnologii, 2:2 (1997), 102–108

[14] Parker R. A., “Eddy diffusion of phytoplankton and nutrients: Estimating coefficients from simulated and observed vertical distributions”, Journal of Plankton Research, 13:4 (1991), 815–830 | DOI

[15] Tsydenov B. O., Kay A., Starchenko A. V., “Numerical modeling of the spring thermal bar and pollutant transport in a large lake”, Ocean Modelling, 104 (2016), 73–83 | DOI

[16] Steele J. H., “Notes on some theoretical problems in production ecology”, Mem. Ist. Ital. Idrobiol. Dr. Marco de Marchi, 1965, no. 18, Suppl., 383–398

[17] John B. E. St., Carmack E. C., Daley R. J., Gray C. B. J., Pharo C. H., The limnology of Kamloops Lake, B.C. Vancouver, 1976, 167 pp.

[18] Tsydenov B. O., Numerical modeling of the effect of spring thermal bar in a deep lake, Physics and Mathematics Cand. Diss., Tomsk, 2013, 145 pp.

[19] Tsydenov B. O., “A numerical study of impurity propagation in a freshwater lake on the basis of water turbidity distribution”, Vychislitelnye tekhnologii, 22:S1 (2017), 113–124

[20] Tsydenov B. O., “Numerical simulation of hydrobiological processes during the spring thermal bar on the basis of the nutrient–phytoplankton–zooplankton model”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 3(41), 86–97 | DOI