@article{VTGU_2017_50_a1,
author = {D. Yu. Ivanov},
title = {On solving plane problems of non-stationary heat conduction by the collocation boundary element method},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {9--29},
year = {2017},
number = {50},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a1/}
}
TY - JOUR AU - D. Yu. Ivanov TI - On solving plane problems of non-stationary heat conduction by the collocation boundary element method JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 9 EP - 29 IS - 50 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a1/ LA - ru ID - VTGU_2017_50_a1 ER -
%0 Journal Article %A D. Yu. Ivanov %T On solving plane problems of non-stationary heat conduction by the collocation boundary element method %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 9-29 %N 50 %U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a1/ %G ru %F VTGU_2017_50_a1
D. Yu. Ivanov. On solving plane problems of non-stationary heat conduction by the collocation boundary element method. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 9-29. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a1/
[1] Brebbia C. A., Telles J. C. F., Wrobel L. C., Boundary element techniques, Springer-Verlag, New York, 1984, 464 pp. | MR | Zbl
[2] Onishi K., “Convergence in the boundary element method for heat equation”, Teaching for Robust Understanding of Mathematics, 17 (1981), 213–225 | MR | Zbl
[3] Costabel M., Onishi K., Wendland W. L., “A boundary element collocation method for the Neumann problem of the heat equation”, Inverse and Ill-Posed Problems, eds. H.W. Engl, C.W. Groetsch, Academic Press, Boston, 1987, 369–384 | DOI | MR
[4] Hongtao Y., “On the convergence of boundary element methods for initial-Neumann problems for the heat equation”, Mathematics of Computation, 68:226 (1999), 547–557 | DOI | MR | Zbl
[5] Hamina M., Saranen J., “On the spline collocation method for the single layer heat operator equation”, Mathematics of Computation, 62:205 (1994), 41–64 | DOI | MR | Zbl
[6] Ivanov D. Y., “Solution of two-dimensional boundary-value problems corresponding to initial-boundary value problems of diffusion on a right cylinder”, Differential Equations, 46:8 (2010), 1104–1113 | DOI | MR | Zbl
[7] Ivanov D. Yu., Dzerzhinskiy R. I., “Solution of the Robin problems for two-dimensional differential-operator equations describing the thermal conductivity in a straight cylinder”, Nauchno-tekhnicheskiy vestnik Povolzh'ya – Scientific and Technical Journal of the Volga Region, 2016, no. 1, 15–17
[8] Ivanov D. Yu., “Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika - Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 6(38), 33–45 | DOI
[9] Berezin I. S., Zhidkov N. P., Methods of computations, v. 2, GIFML, M., 1962 | MR
[10] Fihktengol'ts G. M., A course of differential and integral calculus, v. 2, Fizmatlit, M., 2001
[11] Ivanov D. Yu., “Calculation of operators solving problems of heat conduction in straight cylinders using semigroup symmetry”, Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI – Proceedings of Moscow State Technical University MAMI, 4:4(22) (2014), 26–38