An application of hybrid simulation algorithm for a research of the disposal system of noxious gases in aluminium production
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2016), pp. 64-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with the problem of flow-rate balance in the disposal system of noxious gases from an industrial building of aluminum production. This system appears to be a highly branched network about 2 kilometers long, with the baths arranged into several groups of a various number of baths in each. Our team set a problem aimed at evaluating the possibility of the flow balance between the groups so that the each bath could fall within a fixed volume of the removable gas. Normally, the modeling of such problems applies methods of the theory of hydraulic circuits, which requires the system to be a set of nodes and branches. However, the considered system includes a gathering manifold of a complex geometry, which cannot be represented as a set of network elements. Thus, the solving of the problem was carried out using an original 1D/3D hybrid algorithm intended for solving of the multiscale problems of hydrodynamics. A particular feature of this algorithm, based on a SIMPLE procedure, is a common equation for the pressure correction calculated for the entire computational region. The unification of two parts of the problem in the pressure field allows providing a coherence of the solution, a rapid convergence, and a high speed of calculations in comparison with the usual methods of solving such (multiscale) problems, which suppose the separate use of the spatial and network models interrelated with a data exchange on the contact boundary. As a result of the calculation, the hydraulic resistance of the balancing shutter and the total evacuation in a gas purification system for the balanced version have been determined.
Keywords: numerical modeling, theory of hydraulic circuits, 1D/3D hybrid method, gas purification system.
Mots-clés : CFD
@article{VTGU_2016_6_a5,
     author = {S. A. Filimonov and P. A. Neob{\textquotedblright}yavlyayushchiy and E. I. Mihienkova},
     title = {An application of hybrid simulation algorithm for a research of the disposal system of noxious gases in aluminium production},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {64--79},
     year = {2016},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_6_a5/}
}
TY  - JOUR
AU  - S. A. Filimonov
AU  - P. A. Neob”yavlyayushchiy
AU  - E. I. Mihienkova
TI  - An application of hybrid simulation algorithm for a research of the disposal system of noxious gases in aluminium production
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 64
EP  - 79
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_6_a5/
LA  - ru
ID  - VTGU_2016_6_a5
ER  - 
%0 Journal Article
%A S. A. Filimonov
%A P. A. Neob”yavlyayushchiy
%A E. I. Mihienkova
%T An application of hybrid simulation algorithm for a research of the disposal system of noxious gases in aluminium production
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 64-79
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2016_6_a5/
%G ru
%F VTGU_2016_6_a5
S. A. Filimonov; P. A. Neob”yavlyayushchiy; E. I. Mihienkova. An application of hybrid simulation algorithm for a research of the disposal system of noxious gases in aluminium production. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2016), pp. 64-79. http://geodesic.mathdoc.fr/item/VTGU_2016_6_a5/

[1] Merenkov A. P., Khasilev V. Ya., The theory of hydraulic circuits, Nauka, M., 1985

[2] Novitskiy N. N., Sennova E. V., Sukharev M. G., et al., Hydraulic circuits. Development of the theory and applications, Nauka, Novosibirsk, 2000

[3] Wilson R. J., Introduction to graph theory, Longman Group Ltd., 1985 | MR | Zbl

[4] Patankar S. V., Numerical heat transfer and fluid flow, Hemisphere, Washington, 1984

[5] Anderson D. A., Tannehill J. C., Pletcher R. H., Computational fluid mechanics and heat transfer, Hemisphere, New York, 1984 | MR | Zbl

[6] Ferziger J. H., Peric M., Computational Methods for Fluid Dynamics, 3 rev. edition, Springer, 2002 | MR | Zbl

[7] Bystrov Yu. A., Isaev S. A., Kudryavtsev N. A., Leont`ev A. I., Numerical simulation of vortex intensification of the heat exchange in packages of tubes, Sudostroenie, St. Petersburg, 2005

[8] Formaggia L., Nobile F., Quarteroni A., Veneziani A., “Multiscale modelling of the circulatory system: a preliminary analysis”, Computing and Visualization in Science, 2 (1999), 75–83 | DOI | Zbl

[9] Harvey Ho. et al., “A hybrid 1d and 3d approach to hemodynamics modelling for a patient-specific cerebral vasculature and aneurysm”, Medical Image Computing and ComputerAssisted Intervention, MICCAI 2009, Lecture Notes in Computer Science, 5762, 2009, 323–330 | DOI

[10] Dobroserdova T. K., Numerical modeling of the blood flow under presence of vascular implants or pathology, Candidate's Dissertation in Mathematics and Physics, M., 2013

[11] Voevodin A. F., Nikiforovskaya V. S., “Numerical modeling of unsteady-state hydrothermal processes in water objects”, International Conference “Modern Problems of Applied Mathematics and Mechanics: Theory, Experiment, and Practice” Dedicated to the 90th Anniversary of Academician N. N. Yanenko (Novosibirsk, 2011)

[12] Twigt D., de Goede E., Zijl F., Chiu A. Y. W., “Coupled 1d-3d hydrodynamic modelling, with application to the pearl river delta”, Ocean Dynamics, 59 (2009), 1077–1093 | DOI

[13] Filimonov S. A., Dekterev A. A., Boykov D. V., “Using an integrated approach in the study and optimization of operating modes of flues system”, Pipeline energy systems: Methodological and applied problems of simulation, 2015

[14] Boykov D. V., Filimonov S. A., “Modeling the lubricating system of the reducer of the excavator move”, Journal of Siberian Federal University. Engineering Technologies, 3:4 (2010), 454–462 | Zbl

[15] D'Angelo C., “Multiscale 1d-3d models for tissue perfusion and applications”, 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) (2008)

[16] Filimonov S. A., Dekterev A. A., Boykov D. V., “Numerical simulation of shell-and-tube heat exchanger using a hybrid algorithm”, Thermal processes in engineering, 2014, no. 8, 86–97

[17] Filimonov S. A., Dekterev A. A., Sentyabov A. V., Minakov A. V., “Modeling of conjugate heat transfer in a system of microchannels using a hybrid algorithm”, Siberian journal of industrial mathematics, 18:3 (2015), 86–97 | DOI | Zbl

[18] Storozhev Yu. I., Kulikov B. P., Dust and gas emissions of aluminum electrolyzers with self-baking anodes, SFU, Krasnoyarsk, 2012

[19] Burkat V. S., Drukarev V. A., Reducing emissions to the atmosphere during aluminium production, St. Petersburg, 2005

[20] Neob"yavlyayushchiy P. A., Dekterev A. A., Gavrilov A. A., Storozhev Yu. I., “Numerical and experimental investigation of burner device for anode gas reburning”, Thermophysics and Aeromechanics, 14:1 (2007), 51–160

[21] Neob"yavlyayushchiy P. A., Dekterev A. A., Litvintsev K. Yu., “The study of a complex heat transfer in multicomponent gas mixtures in application to the devices of burning and transportation of anode gases of electrolysis aluminum production”, The theses of reports and messages. XIV Minsk international forum on heat and mass transfer, v. 1, 2012, 214–216

[22] Minakov A. V., “Numerical algorithm for moving-boundary fluid dynamics problems and its testing”, Computational mathematics and mathematical physics, 24:10 (2014), 1618–1629 | DOI | MR | Zbl

[23] Dekterev A. A., Gavrilov A. A., Minakov A. V., “Up-to-date features of the CFD code SigmaFlow for solving the thermal physical problems”, Sovremennaya nauka: issledovaniya, idei, rezul'taty, tekhnologii, 2010, no. 2(4), 117–122

[24] Gavrilov A. A., Minakov A. V., Dekterev A. A., Rudyak V. Ya., “A numerical algorithm for modeling laminar flows in an annular channel with eccentricity”, Journal of Applied and Industrial Mathematics, 5:4 (2011), 559–568 | DOI | MR

[25] Filimonov S. A., Dekterev A. A., Boykov D. V., “A hybrid approach for solving problems of THC containing spatial elements”, Pipeline system energy: mathematical and computer modeling, 2014, 46–55

[26] Menter F. R., Zonal Two Equation $k-\omega$ Turbulence Models for Aerodynamic Flows, AIAA Paper 93-2306, 1993 | DOI

[27] Tsibulskiy V. V. et al., Textbook for analytical control of contaminating emissions into the atmosphere, St. Petersburg, 2002

[28] Idel'chik I. E., Handbook of hydraulic resistance, Mashinostroenie, M., 1992

[29] Guidance document. Protection of the nature. Atmosphere. Accuracy requirements for monitoring of industrial emissions. HOWTO, RD 52.04.59-85