Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 100-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Diffusion combustion generated during combustion both in technological devices and in natural fires is usually implemented during the turbulent flow of combustion products in the flame. Nonstationarity of the process leads to the distortion of the flame shape, which provides surface area extension and combustion rate increase. Turbulence scale and the magnitude of pulsation of the parameters significantly affect the combustion mechanism in turbulent flows. It should be noted that in turbulent conditions the scale of turbulent pulsations and the mixing intensity significantly affect the flame shape, the combustion speed, the thermodynamic parameters of the process, the combustion completeness, and efficiency. The development of the thermography methods gives encouraging results for obtaining reliable temperatures of the flame. Thereby it is possible to visualize the temperature inhomogeneities. Based on the analysis of the flame radiation spectra with the application of high speed infrared cameras, it was found that the temperature in the flame changes repeatedly in time, and there are characteristic frequencies in the range of the temperature changes. These frequencies are caused by the movement of the flame temperature inhomogeneities associated with the structure of the flow. This paper presents results of mathematical modeling of the current in the flame generated during diesel fuel combustion, and experimental estimates of the scale of turbulent eddies in the flame. The results were obtained using the SIMPLEC algorithm and thermography methods. The paper includes the description of the experimental design and data processing. A detailed description of the system of equations used for the mathematical modeling is presented. Comparing the results of numerical simulation and experimental data shows a good correlation of the basic thermodynamic parameters of the flame and the scale of turbulent eddies in it.
Keywords: IR thermography, flame, temperature, mathematical modeling.
Mots-clés : combustion, turbulence
@article{VTGU_2016_4_a8,
     author = {E. L. Loboda and O. V. Matvienko and M. V. Agafontsev and V. V. Reyno},
     title = {Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {100--114},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_4_a8/}
}
TY  - JOUR
AU  - E. L. Loboda
AU  - O. V. Matvienko
AU  - M. V. Agafontsev
AU  - V. V. Reyno
TI  - Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 100
EP  - 114
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_4_a8/
LA  - ru
ID  - VTGU_2016_4_a8
ER  - 
%0 Journal Article
%A E. L. Loboda
%A O. V. Matvienko
%A M. V. Agafontsev
%A V. V. Reyno
%T Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 100-114
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2016_4_a8/
%G ru
%F VTGU_2016_4_a8
E. L. Loboda; O. V. Matvienko; M. V. Agafontsev; V. V. Reyno. Evaluation of the turbulence scale in a flame at the diffusion combustion of diesel fuel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 100-114. http://geodesic.mathdoc.fr/item/VTGU_2016_4_a8/

[1] Lewis B., Elbe G., Combustion, Flames and Explosions of Gases, 3 ed., Academic Press, New York, 1987

[2] Libby P., Williams F. A., Turbulent Reacting Flows, Academic Press Inc., London, 1994, 1–43

[3] Spalding D. B., “Mixing and chemical reaction in steady confined turbulent flames”, Thirteenth Symposium (International) on Combustion (1971), 649–657

[4] Shestakov M. V. et al., “PIV study of large-scale flow organisation in slot jets”, International Journal of Heat and Fluid Flow, 51 (2015), 335–352 | DOI

[5] Alekseenko S. V., Dulin V. M., Markovich D. M., Pervunin K. S., “Experimental Investigation of Turbulence Modification in Bubbly Axisymmetric Jets”, Journal of Engineering Thermophysics, 24:2 (2015), 101–112 | DOI

[6] Anufriev I. S., Anikin Yu. A., Fil'kov A. I., et al., “Investigation into the structure of a swirling flow in a model of a vortex combustion chamber by laser doppler anemometry”, Technical Physics Letters, 39:1 (2013), 30–32 | DOI

[7] Li Z. S., Li B., Sun Z. W., Bai X. S., Alden M., “Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-short PLIF imaging of CH, OH, and CH2O in piloted premixed jet flame”, Combust. Flame, 157 (2010), 1087–1096 | DOI

[8] Kathryn N. G., Shen H., Randy A. P., Fuest F., Sutton J. A., “A comparison of turbulent dimethyl ether and methane non-premixed flame structure”, Proceedings of Combustion Institute, 34 (2013), 1447–1454 | DOI

[9] Kazuhiro Y., Shinji I., Masahiro O., “Local flame structure and turbulent burning velocity by joint PLIF imaging”, Proceeding of the Combustion Institute, 33 (2011), 1285–1292 | DOI

[10] Duwig C., Li B., Li Z. S., Aldén M., “High resolution imaging of flameless and distributed turbulent combustion”, Combust. Flame, 159 (2012), 306–316 | DOI

[11] Goh K. H. H., Geipel P., Lindstedt R. P., “Turbulent transport in premixed flames approaching extinction”, Proceedings of the Combustion Institute, 35 (2015), 1469–1476 | DOI

[12] Damien P., Jorge A., Mouna E. H., Benedicte C., “Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations”, Combustion and Flame, 159 (2012), 1605–1618 | DOI

[13] Vivien R. L., Paul G. A., Somesh P. R., et al., “Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion”, Combust. Flame, 161 (2014), 2933–2950 | DOI

[14] Peters N., “Multiscale combustion and turbulence”, Proceedings of the Combustion Institute, 32 (2009), 1–25 | DOI

[15] Matvienko O. V., “Mathematical modeling of heat exchange and conditions of inflammation of a turbulent flow of a reactive gas”, Journal of Engineering Physics and Thermophysics, 89:1 (2016), 203–211

[16] Loboda E. L., Matvienko O. V., Vavilov V. P., Reyno V. V., “Infrared thermographic evaluation of flame turbulence scale”, Infrared Physics Technology, 72 (2015), 1–7 | DOI

[17] Piquet J., Turbulent Flows: Models and Physics, Springer, Berlin, 1999 | MR | Zbl

[18] Egorov A. G., Tizilov A. S., Niyazov V. Ya., Arkhipov V. A., Matvienko O. V., “Effect of the swirl of cocurrent high-velocity air flow on the geometry of an aluminum-air flame”, Russian Journal of Physical Chemistry, 8:5 (2014), 712–715 | DOI | DOI

[19] Hanjalic K., Launder B. E., Schiestel R., “Multiple time-scale concept in turbulent transport modeling”, Turbulent Shear Flows II, Springer Verlag, 1980, 36

[20] Abe K., Kondoh T., Nagano Y., “A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows. I: Flow field calculations”, Int. J. of Heat Mass Transfer, 37:1 (1994), 139–151 | DOI | Zbl

[21] Jones W. P., Launder B. E., “The calculation of low Reynolds number phenomena with a two-equation model of turbulence”, Int. J. of Heat Mass Transfer, 16 (1973), 1119–1130 | DOI

[22] Matvienko O. V., “Heat transfer and formation of turbulence in an internal swirling fluid flow at low Reynolds numbers”, Journal of Engineering Physics and Thermophysics, 87:4 (2014), 940–950 | DOI

[23] Oran E. S., Boris J. P., Numerical Simulation of Reactive Flow, Elservier Science Publishing Co. Inc., New York, 1987, 14

[24] Ushakov V. M., Matvienko O. V., “Numerical investigation of the heat exchange and firing of reactive channel walls by a high-temperature swirling-gas flow”, Journal of Engineering Physics and Thermophysics, 78:3 (2005), 541–547 | DOI

[25] Westbrook C. K., Dryer F. L., “Chemical Kinetic Modeling of Hydrocarbon Combustion”, Prog. Energy Combust. Sci., 10 (1984), 1–57 | DOI

[26] Bray K. N. C., Champion M., Libby P. A., Swaminathan N., “Finite rate chemistry and presumed PDF models for premixed turbulent combustion”, Combust. Flame, 146:4 (2006), 665–673 | DOI | MR

[27] Spalding D. B., “Mathematical Models of Turbulent Flames; A Review”, Combust. Sci. Technol., 13:1–6 (1976), 3–25 | DOI

[28] Grishin A. M., Matvienko O. V., Rudi Yu. A., “Mathematical modeling of gas combustion in a twisted jet and of the formation of a fiery whirlwind”, Journal of Engineering Physics and Thermophysics, 82:5 (2009), 906–913 | DOI

[29] Ferziger J. H., Peric M., Computational Methods for Fluid Dynamics, Springer, Berlin, 1996 | MR | Zbl

[30] Warnatz J., Maas U., Dibble R. W., Combustion, Springer, Berlin, 1999 | Zbl

[31] Van Doormal J. P., Raithby G. D., “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, Numer. Heat Transfer, 7 (1984), 147–163 | Zbl

[32] Loboda E. L., Reyno V. V., Agafontsev M. V., “Choice of a spectral range for measuring temperature fields in a flame and recording high-temperature objects screened by the flame using IR diagnostic methods”, Russian Physics Journal, 58:2 (2015), 278–282 | DOI | MR

[33] Loboda E. L., Reyno V. V., Vavilov V. P., “The Use of Infrared Thermography to Study the Optical Characteristics of Flames from Burning Vegetation”, Infrared Physics and Technology, 67 (2014), 566–573 | DOI