Numerical simulation of hydrobiological processes during the spring thermal bar on the basis of the nutrient–phytoplankton–zooplankton model
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 86-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a mathematical model for simulating the hydrodynamic and hydrobiological processes in a temperate water body during the evolution of the spring riverine thermal bar is described. A thermal bar is a narrow zone in a lake where the water, which has a maximum density, sinks from the surface to the bottom. Numerical simulation of the dynamics of plankton ecosystems in case of Kamloops Lake (British Columbia, Canada) is accomplished by using the nutrient–phytoplankton–zooplankton model of Franks et al. (1986). The hydrodynamic model, which includes the Coriolis force due to Earth's rotation, is written in the Boussinesq approximation with the continuity, momentum, energy, and salinity equations. Closure of the simultaneous equation system is performed with a two-parameter Wilcox $k-\omega$ turbulence model and algebraic relations for the coefficients of turbulent diffusion. The convection–diffusion equations are solved by a finite volume method to satisfy the integral conservation laws. The numerical algorithm for the flow and temperature fields' indication is based on a Crank Nicolson difference scheme. In the equations, the convective terms are approximated with the QUICK second-order upstream scheme. The systems of grid equations are solved by the under-relaxation method at each time step. The data from numerical experiments have shown qualitative agreement with results obtained by Holland et al. (2003). Simulations with the variable values of the concentrations of the biological components, coming from the Thompson River, have demonstrated that the high riverine nutrient concentrations do not play a significant role in dynamics of the phytoplankton and zooplankton biomasses; increasing of the phytoplankton in the river leads to a reduction of the nutrient at the location of the thermal bar, and the monotone growth of the riverine zooplankton incoming has a negative impact on the phytoplankton population.
Keywords: plankton, thermal bar, mathematical model, numerical experiment, Kamloops Lake.
@article{VTGU_2016_3_a8,
     author = {B. O. Tsydenov},
     title = {Numerical simulation of hydrobiological processes during the spring thermal bar on the basis of the nutrient{\textendash}phytoplankton{\textendash}zooplankton model},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {86--97},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a8/}
}
TY  - JOUR
AU  - B. O. Tsydenov
TI  - Numerical simulation of hydrobiological processes during the spring thermal bar on the basis of the nutrient–phytoplankton–zooplankton model
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 86
EP  - 97
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a8/
LA  - ru
ID  - VTGU_2016_3_a8
ER  - 
%0 Journal Article
%A B. O. Tsydenov
%T Numerical simulation of hydrobiological processes during the spring thermal bar on the basis of the nutrient–phytoplankton–zooplankton model
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 86-97
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a8/
%G ru
%F VTGU_2016_3_a8
B. O. Tsydenov. Numerical simulation of hydrobiological processes during the spring thermal bar on the basis of the nutrient–phytoplankton–zooplankton model. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 86-97. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a8/

[1] Forel F. A., “La congelation des lacs Suisses et savoyards pendant l'hiver 1879–1880”, Lac Léman. L'Écho des Alpes, 1880, no. 3, 149–161

[2] Tikhomirov A. I., “On the thermal bar in Yakimvarsky Bay of Lake Ladoga”, Izv. VGO, 91:5 (1959), 424–438

[3] Sherstyankin P. P., “Dynamics of the Selenga shallow waters at the beginning of summer according to the distribution of optical characteristics and water temperature”, Elements of the hydrometeorological regime of Lake Baikal, 5(25), Nauka, M.–L., 1964, 29–37 | Zbl

[4] Blokhina N. S., Ordanovich A. E., Savel'eva O. S., “Model of formation and development of spring thermal bar”, Water Resources, 28:2 (2001), 201–204 | DOI

[5] Naumenko M. A., Gyzivaty V. V., Karetnikov S. G., Petrova T. N., Protopopova E. V., Kryuchkov A. M., “Natural experiment “Thermal Front in Lake Ladoga, 2010””, Doklady Earth Sciences, 444:1 (2012), 601–605 | DOI

[6] Tsvetova E. A., “Mathematical modelling of Lake Baikal hydrodynamics”, Hydrobiologia, 407 (1999), 37–43 | DOI

[7] Rodgers G. K., “A Note on thermocline development and the thermal bar in Lake Ontario”, Symposium of Garda, 1(70) (1966), 401–405, Int. Assoc. Scientific Hydrology

[8] Holland P. R., Kay A., Botte V., “Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake”, J. Mar. Syst., 43:1–2 (2003), 61–81 | DOI

[9] Farrow D. E., “A model for the evolution of the thermal bar system”, EJAM, 24:2 (2013), 161–177 | DOI | MR | Zbl

[10] Parfenova V. V., Shimaraev M. N., Kostornova T. Y., Domysheva V. M., Levin L. A., Dryukker V. V., Zhdanov A. A., Gnatovskii R. Y., Tsekhanovskii V. V., Logacheva N. F., “On the vertical distribution of microorganisms in Lake Baikal during spring deep-water renewal”, Microbiology, 69 (2000), 357–363 | DOI

[11] Mortimer C. H., “Lake hydrodynamics”, Mitteilugen Int. Ver. Limnol., 20 (1974), 124–197

[12] Kelley D. E., “Convection in ice-covered lakes: effects on algal suspension”, J. Plankton Res., 19:12 (1997), 1859–1880 | DOI

[13] Botte V., Kay A., “A numerical study of plankton population dynamics in a deep lake during the passage of the Spring thermal bar”, J. Mar. Sys., 26:3 (2000), 367–386 | DOI

[14] Franks P. J., Wroblewski J. S., Flierl G. R., “Behavior of a simple plankton model with foodlevel acclimation by herbivores”, Marine Biology, 91 (1986), 121–129 | DOI

[15] Tsydenov B. O., Starchenko A. V., “Numerical model of river-lake interaction in the case of a spring thermal bar in Kamloops Lake”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 5(25), 102–115 | MR

[16] Wilcox D. C., “Reassessment of the scale-determining equation for advanced turbulence models”, AIAA Journal, 26:11 (1988), 1299–1310 | DOI | MR | Zbl

[17] Tsydenov B. O., Starchenko A. V., “Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 5(31), 104–113

[18] Chen C. T., Millero F. G., “Precise thermodynamic properties for natural waters covering only limnologies range”, Limnol. Oceanogr., 31:3 (1986), 657–662 | DOI

[19] Mayzaud P., Poulet S. A., “The importance of the time factor in the response of zooplankton to varying concentrations of naturally occurring particulate matter”, Limnol. Oceanogr., 23:6 (1978), 1144–1154 | DOI

[20] Tsydenov B. O., Starchenko A. V., “To the selection of heat flux parameterization models at the water-air interface for the study of the spring thermal bar in a deep lake”, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Proc. SPIE, 9680, 2015, 96800H, 1–8 | DOI

[21] Orlanski I., “A simple boundary condition for unbounded hyperbolic flows”, J. Comput. Phys., 21:3 (1976), 251–269 | DOI | Zbl

[22] Patankar S., Numerical heat transfer and fluid flow, CRC Press, 1980, 214 pp.

[23] Leonard B., “A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation”, Computer Methods in Applied Mechanics and Engineering, 19:1 (1979), 59–98 | DOI | Zbl

[24] Tsydenov B. O., Starchenko A. V., “SIMPLED algorithm for harmonization of velocity and pressure fields for numerical simulation of the thermal bar in a deep lake”, Seventh Siberian Conference on Parallel and High Performance Computing, Proc. of the Conference, TGU Publ., Tomsk, 2014, 109–113

[25] Tsydenov B. O., Numerical modeling of the effect of the spring thermal bar in a deep lake, Physics and Mathematics Cand. Diss., Tomsk, 2013