Investigation of the prolate ellipsoidal particle motion in a swirling flow
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 74-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the investigations of the prolate ellipsoidal particles movement in a swirling flow were carried out. The motion of small particles relative to the carrier fluid flow is insignificant. As a result, the smallest particles move along a helical path at an approximately cylindrical surface. Large particles affected by centrifugal force move to the walls of the outer cylinder along a conical surface. Increasing of the angular velocity of the cylinders leads to an increase in the centrifugal force which intensifies the radial motion of the particles to the outer cylinder. It is found that, depending on the particle orientation in the space, both upward and downward motions are possible. The movement is caused by particular drag force influence on the ellipsoidal particle. The drag force is characterized by the horizontal and vertical components. The horizontal component for heavy particles with density value greater than that of the carrier medium is directed towards the axis of symmetry. The direction of the vertical component of the drag force depends on the orientation of the particles in the space. Utilizing the particle slip velocity model, the regimes of upward and downward movement are defined. Dependencies for the determination of particle velocity components are proposed. It is found that the gravitational settling velocity of the particle decreases with an increase in the value of the Froude number. In the case of a strong swirling flow, the motion of the particle becomes upward.
Keywords: mechanics of fluid, dispersed phase, swirling flow, separation.
Mots-clés : particles
@article{VTGU_2016_3_a7,
     author = {O. V. Matvienko and A. V. Andriasyan and N. A. Mamadraimova and A. O. Andropova},
     title = {Investigation of the prolate ellipsoidal particle motion in a swirling flow},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {74--85},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a7/}
}
TY  - JOUR
AU  - O. V. Matvienko
AU  - A. V. Andriasyan
AU  - N. A. Mamadraimova
AU  - A. O. Andropova
TI  - Investigation of the prolate ellipsoidal particle motion in a swirling flow
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 74
EP  - 85
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a7/
LA  - ru
ID  - VTGU_2016_3_a7
ER  - 
%0 Journal Article
%A O. V. Matvienko
%A A. V. Andriasyan
%A N. A. Mamadraimova
%A A. O. Andropova
%T Investigation of the prolate ellipsoidal particle motion in a swirling flow
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 74-85
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a7/
%G ru
%F VTGU_2016_3_a7
O. V. Matvienko; A. V. Andriasyan; N. A. Mamadraimova; A. O. Andropova. Investigation of the prolate ellipsoidal particle motion in a swirling flow. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 74-85. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a7/

[1] Crowe C., Sommerfeld M., Tsuji Ya., Multiphase Flows with Droplets and Particles, CRC Press, 1998, 472 pp.

[2] Ostrovsky G. M., Applied mechanics of heterogeneous media, Nauka, Saint Petersburg, 2000

[3] Kutepov A. M., Polyanin L. D.. Zapryanov Z. D., Chemical Hydrodynamics, Byuro Kvantum, M., 1996

[4] Matvienko O. V., Evtyushkin E. V., “Mathematical study of hydrocyclone dispersed phase separation in clearing viscoplastic drilling fluids”, Journal of Engineering Physics and Thermophysics, 84:2 (2011), 241–250 | DOI | MR

[5] Clift R., Grace J. R., Weber M. E., Bubbles, drops and particles, Academ Press, NY, 1978, 380 pp.

[6] Rubinow S. I., Keller J. B., “The transverse force on spinning sphere moving in a viscous fluid”, J. of Fluid Mech., 22 (1965), 385–400 | DOI

[7] Matvienko O. V., Daneiko A. M., “Investigation of shock interaction of particles in a stream”, Izvestiya vysshikh uchebnykh zavedeniy. Fizika — Russian Physical Journal, 56:9/3 (2013), 190–192

[8] Matvienko O. V., Andropova A. O., “Studying the particle motion in a fluid flow in the vicinity of a movable wall”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 4, 85–92 | DOI

[9] Matvienko O. V., Evtyushkin E. V., Andropova A. O., “Studying the applicability of the algebraic slip model for predicting the dispersed phase motion in the flow”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 5(37), 76–83 | DOI

[10] Shlikhting G., Grenzschicht-Theorie, Springer-Verlag, 1964 (In German)

[11] Matvienko O. V., Bazuev V. P., Agafontseva M. V., “Investigation of the dynamics of a bubble in a swirling flow of nonlinear-viscous liquid”, Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta, 2012, no. 4(37), 144–156 | MR

[12] J. Happel, H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media, Prentice-Hall, 1965 | MR

[13] Böttner C. U., Sommerfeld M., “Numerical calculation of powder painting using the Euler/Lagrange approach”, Powder Technology, 125 (2002), 206–216 | DOI

[14] Matvienko O. V., Agafontseva M. V., “Numerical study of the degassing process in hydrocyclones”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 4(20), 107–118