Combustion of the coal-methane-air mixture in the heat recovery burner
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 65-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, the research of the combustion of methane-air mixture with coal dust particles in the heat recovery burner is performed. The burner consists of two parallel plates with a thin internal partition (U-shaped burner). The mixture which flows into the inlet is warmed up via the thin internal partition by heat reaction products from the outlet. The mathematical statement of the problem includes the equations of energy conversation for gas, coal particles, and internal partition, mass balance equations of methane, oxygen and coal particles, continuity equation, particle number concentration equation, particle size equation, and gas equation. The numerical simulation is carried out using an implicit difference scheme with a four-point template. The coal dust particle size and the gas flow rate at the inlet varied for each calculation. The stability boundary of the coal-methane–air mixture combustion is determined as a function of the inlet rate of gas depending on coal-dust particle size. The obtained results demonstrate that the heat recovery and coal dust particles burning can support the combustion of full lean methane-air mixtures.
Keywords: coal-methane-air mixture, monodisperse coal dust, slot burner, lean methane-air mixture
Mots-clés : stable combustion.
@article{VTGU_2016_3_a6,
     author = {A. Yu. Krainov and K. M. Moiseeva},
     title = {Combustion of the coal-methane-air mixture in the heat recovery burner},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {65--73},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a6/}
}
TY  - JOUR
AU  - A. Yu. Krainov
AU  - K. M. Moiseeva
TI  - Combustion of the coal-methane-air mixture in the heat recovery burner
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 65
EP  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a6/
LA  - ru
ID  - VTGU_2016_3_a6
ER  - 
%0 Journal Article
%A A. Yu. Krainov
%A K. M. Moiseeva
%T Combustion of the coal-methane-air mixture in the heat recovery burner
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 65-73
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a6/
%G ru
%F VTGU_2016_3_a6
A. Yu. Krainov; K. M. Moiseeva. Combustion of the coal-methane-air mixture in the heat recovery burner. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 65-73. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a6/

[1] Kakutkina N. A., Korzhavin A. A., Manzhos E. V., et al., “Initiation of gas combustion in a porous medium with an external source”, Interekspo Geo-Sibir', 2013, no. 2(5), 189–196

[2] Fursenko R. V., Minaev S. S., “Flame stability in a system with counter flow heat exchange”, Combustion, Explosion and Shock Waves, 41:2 (2005), 133–139 | DOI

[3] Ronney P. D., “Analysis of non-adiabatic heatrecirculating combustors”, Combust. Flame, 135:4 (2003), 421–439 | DOI

[4] Krainov A. Yu., Moiseeva K. M., “The influence of gas flow rate on the methane-air mixture burning in a flat burner with an inert body”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 1(33), 63–71

[5] Krainov A. Yu., Moiseeva K. M., “Combustion of lean methane-air mixtures in a slot burner with adiabatic outer walls”, Combustion, Explosion and Shock Waves, 52:1 (2016), 45–52 | DOI

[6] Lewis B., Von Elbe G., Combustion, Flames and Explosions of Gases, Academic Press, Harcourt Brace Jovanovich Publ., 1987

[7] Bradley D., Lawes M., Scott M. J., Usta N., “The Structure of coal-air-CH4 laminar Flames in a low-Pressure burner: CARS measurements and modeling studies”, Combust. Flame, 124:1–2 (2001), 82–105 | DOI

[8] Krainov A. Yu., “Modeling of flame propagation in a mixture of combustible gases and particles”, Combustion, Explosion and Shock Waves, 36:2 (2000), 157–163 | DOI | MR

[9] Frank-Kamenetskiy D. A., Diffusion and Heat Transfer in Chemical Kinetics, Nauka, M., 1987