Fully inert subgroups of completely decomposable finite rank groups and their commensurability
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 42-50

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of an Abelian group $G$ is said to be fully inert in $G$ if the subgroup $H\cap\varphi H$ has a finite index in $\varphi H$ for any endomorphism $\varphi$ of the group $G$. Subgroups $H$ and $K$ of the group $G$ are said to be commensurable if the subgroup $K\cap H$ has a finite index in $H$ and in $K$. Some properties of fully inert and commensurable groups in the context of direct decompositions of the group and operations on subgroups are proved. For example, if a subgroup $H$ is commensurable with a subgroup $K$, then $H$ is commensurable with $H\cap K$ and with $H + K$; if a subgroup $H$ is commensurable with a subgroup $K$, then the subgroup $fH$ is commensurable with $fK$ for any homomorphism $f$. The main result of the paper is that every fully inert subgroup of a completely decomposable finite rank torsion-free group $G$ is commensurable with a fully invariant subgroup if and only if types of rank $1$ direct summands of the group $G$ are either equal or incomparable, and all rank $1$ direct summands of the group $G$ are not divisible by any prime number $p$.
Keywords: factor group, fully invariant subgroup, commensurable subgroups, divisible hull, rank of the group.
@article{VTGU_2016_3_a3,
     author = {A. R. Chekhlov},
     title = {Fully inert subgroups of completely decomposable finite rank groups and their commensurability},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {42--50},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - Fully inert subgroups of completely decomposable finite rank groups and their commensurability
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 42
EP  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/
LA  - ru
ID  - VTGU_2016_3_a3
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T Fully inert subgroups of completely decomposable finite rank groups and their commensurability
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 42-50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/
%G ru
%F VTGU_2016_3_a3
A. R. Chekhlov. Fully inert subgroups of completely decomposable finite rank groups and their commensurability. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 42-50. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/