@article{VTGU_2016_3_a3,
author = {A. R. Chekhlov},
title = {Fully inert subgroups of completely decomposable finite rank groups and their commensurability},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {42--50},
year = {2016},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/}
}
TY - JOUR AU - A. R. Chekhlov TI - Fully inert subgroups of completely decomposable finite rank groups and their commensurability JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2016 SP - 42 EP - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/ LA - ru ID - VTGU_2016_3_a3 ER -
%0 Journal Article %A A. R. Chekhlov %T Fully inert subgroups of completely decomposable finite rank groups and their commensurability %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2016 %P 42-50 %N 3 %U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/ %G ru %F VTGU_2016_3_a3
A. R. Chekhlov. Fully inert subgroups of completely decomposable finite rank groups and their commensurability. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 42-50. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/
[1] Dikranjan D., Giordano Bruno A., Salce L., Virili S., “Fully inert subgroups of divisible Abelian groups”, J. Group Theory, 16:6 (2013), 915–939 | DOI | MR | Zbl
[2] Dikranjan D., Salce L., Zanardo P., “Fully inert subgroups of free Abelian groups”, Period. Math. Hungar., 69:1 (2014), 69–78 | DOI | MR | Zbl
[3] Goldsmith B., Salce L., Zanardo P., “Fully inert subgroups of Abelian $p$-groups”, J. of Algebra, 419 (2014), 332–349 | DOI | MR | Zbl
[4] Belyaev V. V., “Inert subgroups in infinite simple groups”, Sib. Math. J., 34:4 (1993), 606–611 | DOI | MR | Zbl
[5] Belyaev V. V., “Locally finite groups containing a finite inseparable subgroup”, Sib. Math. J., 34:2 (1993), 218–232 | DOI | MR | Zbl
[6] Belyaev V. V., Kuzucuoğlu M., Seçkin E., “Totally inert groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 151–156 | MR | Zbl
[7] Dixon M. R., Evans M. J., Tortora A., “On totally inert simple groups”, Cent. Eur. J. Math., 8:1 (2010), 22–25 | DOI | MR | Zbl
[8] Dardano U., Rinauro S., “Inertial automorphisms of an abelian group”, Rend. Sem. Mat. Univ. Padova, 127 (2012), 213–233 | DOI | MR | Zbl
[9] Fuchs L., Infinite Abelian groups, v. II, Academic Press, New York–London, 1973 | MR | Zbl
[10] Chekhlov A. R., “On a class of endotransitive groups”, Math. Notes, 69:5–6 (2001), 863–867 | DOI | MR | Zbl
[11] Chekhlov A. R., “On the projective commutant of Abelian groups”, Sib. Math. J., 53:2 (2012), 361–370 | DOI | MR | Zbl
[12] Chekhlov A. R., “Abelian groups with nilpotent commutators of endomorphisms”, Russian Math., 56:10 (2012), 50–61 | DOI | MR | Zbl
[13] Chekhlov A. R., “On projectively soluble abelian groups”, Sib. Math. J., 53:5 (2012), 927–933 | DOI | MR | Zbl
[14] Chekhlov A. R., “On Abelian Groups Close to E-Solvable Groups”, J. Math. Sci., 197:5 (2014), 708–733 | DOI | MR | Zbl
[15] Chekhlov A. R., Danchev P. V., “On Abelian groups having all proper fully invariant subgroups isomorphic”, Comm. Algebra, 43:12 (2015), 5059–5073 | DOI | MR | Zbl
[16] Călugăreanu G., “Strongly invariant subgroups”, Glasg. Math. J., 57:2 (2015), 431–443 | DOI | MR