Fully inert subgroups of completely decomposable finite rank groups and their commensurability
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 42-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A subgroup $H$ of an Abelian group $G$ is said to be fully inert in $G$ if the subgroup $H\cap\varphi H$ has a finite index in $\varphi H$ for any endomorphism $\varphi$ of the group $G$. Subgroups $H$ and $K$ of the group $G$ are said to be commensurable if the subgroup $K\cap H$ has a finite index in $H$ and in $K$. Some properties of fully inert and commensurable groups in the context of direct decompositions of the group and operations on subgroups are proved. For example, if a subgroup $H$ is commensurable with a subgroup $K$, then $H$ is commensurable with $H\cap K$ and with $H + K$; if a subgroup $H$ is commensurable with a subgroup $K$, then the subgroup $fH$ is commensurable with $fK$ for any homomorphism $f$. The main result of the paper is that every fully inert subgroup of a completely decomposable finite rank torsion-free group $G$ is commensurable with a fully invariant subgroup if and only if types of rank $1$ direct summands of the group $G$ are either equal or incomparable, and all rank $1$ direct summands of the group $G$ are not divisible by any prime number $p$.
Keywords: factor group, fully invariant subgroup, commensurable subgroups, divisible hull, rank of the group.
@article{VTGU_2016_3_a3,
     author = {A. R. Chekhlov},
     title = {Fully inert subgroups of completely decomposable finite rank groups and their commensurability},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {42--50},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - Fully inert subgroups of completely decomposable finite rank groups and their commensurability
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 42
EP  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/
LA  - ru
ID  - VTGU_2016_3_a3
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T Fully inert subgroups of completely decomposable finite rank groups and their commensurability
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 42-50
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/
%G ru
%F VTGU_2016_3_a3
A. R. Chekhlov. Fully inert subgroups of completely decomposable finite rank groups and their commensurability. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 42-50. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a3/

[1] Dikranjan D., Giordano Bruno A., Salce L., Virili S., “Fully inert subgroups of divisible Abelian groups”, J. Group Theory, 16:6 (2013), 915–939 | DOI | MR | Zbl

[2] Dikranjan D., Salce L., Zanardo P., “Fully inert subgroups of free Abelian groups”, Period. Math. Hungar., 69:1 (2014), 69–78 | DOI | MR | Zbl

[3] Goldsmith B., Salce L., Zanardo P., “Fully inert subgroups of Abelian $p$-groups”, J. of Algebra, 419 (2014), 332–349 | DOI | MR | Zbl

[4] Belyaev V. V., “Inert subgroups in infinite simple groups”, Sib. Math. J., 34:4 (1993), 606–611 | DOI | MR | Zbl

[5] Belyaev V. V., “Locally finite groups containing a finite inseparable subgroup”, Sib. Math. J., 34:2 (1993), 218–232 | DOI | MR | Zbl

[6] Belyaev V. V., Kuzucuoğlu M., Seçkin E., “Totally inert groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 151–156 | MR | Zbl

[7] Dixon M. R., Evans M. J., Tortora A., “On totally inert simple groups”, Cent. Eur. J. Math., 8:1 (2010), 22–25 | DOI | MR | Zbl

[8] Dardano U., Rinauro S., “Inertial automorphisms of an abelian group”, Rend. Sem. Mat. Univ. Padova, 127 (2012), 213–233 | DOI | MR | Zbl

[9] Fuchs L., Infinite Abelian groups, v. II, Academic Press, New York–London, 1973 | MR | Zbl

[10] Chekhlov A. R., “On a class of endotransitive groups”, Math. Notes, 69:5–6 (2001), 863–867 | DOI | MR | Zbl

[11] Chekhlov A. R., “On the projective commutant of Abelian groups”, Sib. Math. J., 53:2 (2012), 361–370 | DOI | MR | Zbl

[12] Chekhlov A. R., “Abelian groups with nilpotent commutators of endomorphisms”, Russian Math., 56:10 (2012), 50–61 | DOI | MR | Zbl

[13] Chekhlov A. R., “On projectively soluble abelian groups”, Sib. Math. J., 53:5 (2012), 927–933 | DOI | MR | Zbl

[14] Chekhlov A. R., “On Abelian Groups Close to E-Solvable Groups”, J. Math. Sci., 197:5 (2014), 708–733 | DOI | MR | Zbl

[15] Chekhlov A. R., Danchev P. V., “On Abelian groups having all proper fully invariant subgroups isomorphic”, Comm. Algebra, 43:12 (2015), 5059–5073 | DOI | MR | Zbl

[16] Călugăreanu G., “Strongly invariant subgroups”, Glasg. Math. J., 57:2 (2015), 431–443 | DOI | MR