On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 31-41

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an optimal control problem for a parabolic equation with an integral boundary condition and controls in coefficients is considered. Let it be required to minimize the functional $$ J(\nu)=\int_0^{\mathfrak{l}}|u(x;T;\nu)-y(x)|^2dx $$ on the solutions $u=u(x,t)=u(x,t;\nu)$ of the boundary value problem \begin{gather*} u_t-(k(x,t)u_x)_x+q(x,t)u=f(x,t),\quad (x,t)\in\mathcal{Q}_T=\{(x,t): 0\mathfrak{l},\ 0\leqslant T\}\\ u(x,0)=\varphi(x),\ 0\leqslant x\leqslant \mathfrak{l},\\ u_x(0,t)=0, \quad k(l,t)u_x(\mathfrak{l},t)=\int_0^{\mathfrak{l}}H(x)u_x(x,t)dx+g(t),\quad 0\leqslant T, \end{gather*} corresponding to all allowable controls $\nu=\nu(x,t)=(k(x,t),q(x,t))$ from the set \begin{gather*} V=\{\nu(x,t)=(k(x,t),q(x,t))\in H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T): 0(x,t)\leqslant\mu,\\ |k_x(x,t)|\leqslant\mu_1,\ |k_t(x,t)|\leqslant\mu_2\quad |q(x,t)|\leqslant\mu_3 \text{ a.e. on }\mathcal{Q}_T\}. \end{gather*} Here, $l, T, v, \mu, \mu_1, \mu_2, \mu_3>0$ are given numbers and $y(x), \varphi(x)\in W_2^1(0,\mathfrak{l})$, $H(x)\in \mathring{W}_2^1(0,\mathfrak{l})$, $f(x,t)\in L_2(\mathcal{Q}_T)$, and $g(t)\in W_2^1(0,T)$ are known functions. The work deals with problems of correctness in formulating the considered optimal control problem in the weak topology of the space $H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T)$. Examples showing that this problem is incorrect in the general case in the strong topology of the space $H$ are presented. The objective functional is proved to be continuously Frechet differentiable and a formula for its gradient is found. A necessary condition of optimality is established in the form of a variational inequality.
Keywords: optimal control, integral boundary condition, optimality condition.
Mots-clés : parabolic equation
@article{VTGU_2016_3_a2,
     author = {R. K. Tagiyev and S. A. Gashimov and V. M. Gabibov},
     title = {On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {31--41},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a2/}
}
TY  - JOUR
AU  - R. K. Tagiyev
AU  - S. A. Gashimov
AU  - V. M. Gabibov
TI  - On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 31
EP  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a2/
LA  - ru
ID  - VTGU_2016_3_a2
ER  - 
%0 Journal Article
%A R. K. Tagiyev
%A S. A. Gashimov
%A V. M. Gabibov
%T On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 31-41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a2/
%G ru
%F VTGU_2016_3_a2
R. K. Tagiyev; S. A. Gashimov; V. M. Gabibov. On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 31-41. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a2/