On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 31-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, an optimal control problem for a parabolic equation with an integral boundary condition and controls in coefficients is considered. Let it be required to minimize the functional $$ J(\nu)=\int_0^{\mathfrak{l}}|u(x;T;\nu)-y(x)|^2dx $$ on the solutions $u=u(x,t)=u(x,t;\nu)$ of the boundary value problem \begin{gather*} u_t-(k(x,t)u_x)_x+q(x,t)u=f(x,t),\quad (x,t)\in\mathcal{Q}_T=\{(x,t): 0<x<\mathfrak{l},\ 0<t\leqslant T\}\\ u(x,0)=\varphi(x),\ 0\leqslant x\leqslant \mathfrak{l},\\ u_x(0,t)=0, \quad k(l,t)u_x(\mathfrak{l},t)=\int_0^{\mathfrak{l}}H(x)u_x(x,t)dx+g(t),\quad 0<t\leqslant T, \end{gather*} corresponding to all allowable controls $\nu=\nu(x,t)=(k(x,t),q(x,t))$ from the set \begin{gather*} V=\{\nu(x,t)=(k(x,t),q(x,t))\in H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T): 0<v<k(x,t)\leqslant\mu,\\ |k_x(x,t)|\leqslant\mu_1,\ |k_t(x,t)|\leqslant\mu_2\quad |q(x,t)|\leqslant\mu_3 \text{ a.e. on }\mathcal{Q}_T\}. \end{gather*} Here, $l, T, v, \mu, \mu_1, \mu_2, \mu_3>0$ are given numbers and $y(x), \varphi(x)\in W_2^1(0,\mathfrak{l})$, $H(x)\in \mathring{W}_2^1(0,\mathfrak{l})$, $f(x,t)\in L_2(\mathcal{Q}_T)$, and $g(t)\in W_2^1(0,T)$ are known functions. The work deals with problems of correctness in formulating the considered optimal control problem in the weak topology of the space $H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T)$. Examples showing that this problem is incorrect in the general case in the strong topology of the space $H$ are presented. The objective functional is proved to be continuously Frechet differentiable and a formula for its gradient is found. A necessary condition of optimality is established in the form of a variational inequality.
Keywords: optimal control, integral boundary condition, optimality condition.
Mots-clés : parabolic equation
@article{VTGU_2016_3_a2,
     author = {R. K. Tagiyev and S. A. Gashimov and V. M. Gabibov},
     title = {On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {31--41},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a2/}
}
TY  - JOUR
AU  - R. K. Tagiyev
AU  - S. A. Gashimov
AU  - V. M. Gabibov
TI  - On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 31
EP  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a2/
LA  - ru
ID  - VTGU_2016_3_a2
ER  - 
%0 Journal Article
%A R. K. Tagiyev
%A S. A. Gashimov
%A V. M. Gabibov
%T On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 31-41
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a2/
%G ru
%F VTGU_2016_3_a2
R. K. Tagiyev; S. A. Gashimov; V. M. Gabibov. On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 31-41. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a2/

[1] Ionkin N. I., “The solution of the boundary problem of the theory of heat conduction with a nonclassical boundary condition”, Differentsial'nye uravneniya — Differential Equations, 13:2 (1977), 294–304 | MR | Zbl

[2] Samarskii A. A., “On some problems of the theory of differential equations”, Differentsial'nye uravneniya — Differential Equations, 16:11 (1980), 1925–1935 | MR

[3] Nakhushev A. Z., Equations of Mathematical Biology, Vysshaya Shkola, M., 1995

[4] Ivanchov N. I., “Boundary Value Problems for a Parabolic Equation with Integral Conditions”, Differential Equations, 40:4 (2004), 591–609 | DOI | MR | Zbl

[5] Kozhanov A. N., “On solvability of the boundary value problem with a nonlocal boundary condition for linear parabolic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki — J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2004, no. 30, 63–69 | DOI

[6] Pulkkinen L. S., Non-classical equations of mathematical physics, Institute of Mathematics Publ., Novosibirsk, 2005, 231–239 (in Russian) | Zbl

[7] Danilkina O. Yu., “A nonlocal problem for the heat conduction equation with an integral condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki — J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2007, no. 1(14), 5–9 | DOI

[8] Lions J. L., Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod/Gauthier-Villars, Paris, 1968 (In French) | MR | MR

[9] Serovayskiy S. Ya., “Optimal control problems in coefficients for a parabolic type equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 12, 44–50 | MR

[10] Iskenderov A. D., Tagiev R. K., “Optimization problems with controls in coefficients of a parabolic equation”, Differentsial'nye uravneniya — Differential Equations, 19:8 (1983), 1324–1334 | MR | Zbl

[11] Tagiev R. K., “Optimal coefficient control in parabolic systems”, Differential Equations, 45:10 (2009), 1526–1535 | DOI | MR | Zbl

[12] Tagiev R. K., “Optimal control problem for a quasilinear parabolic equation with controls in the coefficients and with state constraints”, Differential Equations, 49:3 (2013), 369–381 | DOI | DOI | MR | Zbl

[13] Hem R. J., “Optimal control of the convective velocity coefficient in a parabolic problem”, Nonlinear Anal., 63 (2005), 1383–1390

[14] Tagiev R. K., Gashimov S. A., “The optimal control problem for the coefficients of a parabolic equation under phase constraints”, Automation and Remote Control, 7:8 (2015), 1347–1360 | DOI | MR | Zbl

[15] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, M., 1973 | MR

[16] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and quasilinear equations of the parabolic type, Nauka, M., 1967 | MR

[17] Lions J. L., Contrôle des systèmes distribués singuliers, Gauthier-Villars, Paris, 1983 (In French) | MR | MR

[18] Vasil'ev F. P., Methods for solving extreme problems, Nauka, M., 1981 | MR