@article{VTGU_2016_3_a1,
author = {A. N. Malyutina and K. A. Alipova},
title = {On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {16--30},
year = {2016},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a1/}
}
TY - JOUR AU - A. N. Malyutina AU - K. A. Alipova TI - On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2016 SP - 16 EP - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a1/ LA - ru ID - VTGU_2016_3_a1 ER -
%0 Journal Article %A A. N. Malyutina %A K. A. Alipova %T On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2016 %P 16-30 %N 3 %U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a1/ %G ru %F VTGU_2016_3_a1
A. N. Malyutina; K. A. Alipova. On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 16-30. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a1/
[1] Vuorinen M., “On the Iversen–Tsuji theorem for quasiregular mappings”, Mathematica Scandinavica, 41 (1977), 90–98 | MR | Zbl
[2] Martio O., Rickman S., “Boundary behavior of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 507 (1972), 1–17 | MR
[3] Lavrentyev M. A., “On a certain differential characteristic of homeomorphic mappings of three-dimensional domains”, Dokl. Akad. Nauk SSSR, 20:4 (1938), 241–242
[4] Poleckii E.A, “On the removal of singularities of quasiconformal mappings”, Mathematics of the USSR-Sbornik, 21:2 (1973), 240–254 | DOI | MR | Zbl
[5] Alipova K. A., Elizarova M. A., Malyutina A. N., “Examples of the mappings with $s$-averaged characteristic”, Complex Analysis and Its Applications, Proc. of the International Conference, PetrGU Publ., Petrozavodsk, 2014, 12–17 (Accessed 14.05.2016) http://piccana.karelia.ru/_docs/2014/atezis14.pdf
[6] Malyutina A., Elizarova M., Mappings with $s$-averaged characteristic. Definition and properties, LAP LAMBERT Academic Publishing, 2013, 121 pp.
[7] Sychev A. V., Modules and spatial quasiconformal mappings, Nauka, Novosibirsk, 1983 | MR
[8] Poleckii E. A., “The modulus method for nonhomeomorphic quasiconformal mappings”, Mathematics of the USSR-Sbornik, 12:2 (1970), 260–270 | DOI
[9] Malyutina A. N., Krivosheina I. I., Batalova N. N., “Distortion of the spherical module of families of curves”, Researches on Mathematical Analysis and Algebra, 3, TGU Publ., Tomsk, 2001, 179–195
[10] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | DOI | MR | Zbl
[11] Väisälä J., “Removable sets for quasiconformal mappings in space”, J. Mech., 19:1 (1969), 49–51 | MR | Zbl
[12] Kruglikov V. I., Paykov V. I., “Continuous mappings with a finite Dirichlet integral”, Dokl. Akad. Nauk SSSR, 249:5 (1979), 1049–1052 | MR
[13] Reshetnyak Yu. G., Spatial mappings with bounded distortion, Nauka, Novosibirsk, 1982
[14] Väisälä J., “Two new characterization for quasiconformality”, Ann. Acad. Sci. Fenn. A1, 362 (1965), 1–12 | MR
[15] Malyutina A. N., Elizarova M. A., “Estimations of distortion of the modules for the mappings with $s$-average characteristic”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 2(10), 5–15
[16] Aseev V. V., “On a property of the modulus”, Dokl. Akad. Nauk SSSR, 200:3 (1971), 513–514 | MR | Zbl
[17] Martio O., Rickman S., Väisälä J., “Distortion and singularities for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1, 1970, no. 455, 1–13 | MR
[18] Ignat'ev A. A., Ryazanov V. I., “Finite mean oscillation in the theory of mappings”, Ukrainian mathematical bulletin, 2:3 (2005), 395–417 | MR | Zbl
[19] Martio O. et al., “A contribution to the theory of $Q$-homeomorphisms”, Dokl. Ross. Akad. Nauk, 381:1 (2001), 20–22 | MR | Zbl
[20] Martio O., Ryazanov V., Srebro U., Yakubov E., “Mappings with finite length distortion”, J. d'Anal. Math., 93 (2004), 215–236 | DOI | MR | Zbl
[21] Ryazanov V. I., Sevost'yanov E. A., “Equicontinuity of mean quasiconformal mappings”, Siberian Mathematical Journal, 52:3 (2011), 524–536 | DOI | MR | Zbl