On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 16-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we continue to develop the geometric method of modules of curve families for studying analytical and geometrical properties of nonhomeomorphic mappings with $s$-averaged characteristic. We consider the question of the erasure of special sets under mappings with $s$-averaged characteristic. In this work, in contrast to previous results which require that the mapping is homeomorphic or the capacity of singular points is zero, nonhomeomorphic mappings with $s$-averaged characteristic are considered and a weaker condition is taken as constraints. We generalize the theorem which is known in the case $n = 2$ as Iversen–Tsuji's theorem for the case $n\geqslant3$. There are well-known examples demonstrating the existence of essential singularities for which Hausdorff's measure $\Lambda_\beta\ne0$ at some $\beta\ne0$ for mappings with an $s$-averaged characteristic. The work presents some examples which illustrate distinctive properties of the considered class of mappings. A theorem about the module distortion for families of curves under mappings with allowance for multiplicity and, as a consequence, the characteristic property of the spherical module of families of curves asymptotic to a special boundary set is proved. The mappings are extended to continuous ones if the dimension of the set of singular points $I$ $\mathrm{dim}\, I \leqslant n-2$ and $s > 1$. The results are applicable to many classes of mappings of subclasses $W_n^1(U)$.
Keywords: spatial mappings with s-averaged characteristics, method of modules, desingularization, estimates of the distortion, asymptotic lifts.
@article{VTGU_2016_3_a1,
     author = {A. N. Malyutina and K. A. Alipova},
     title = {On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--30},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_3_a1/}
}
TY  - JOUR
AU  - A. N. Malyutina
AU  - K. A. Alipova
TI  - On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 16
EP  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_3_a1/
LA  - ru
ID  - VTGU_2016_3_a1
ER  - 
%0 Journal Article
%A A. N. Malyutina
%A K. A. Alipova
%T On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 16-30
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2016_3_a1/
%G ru
%F VTGU_2016_3_a1
A. N. Malyutina; K. A. Alipova. On boundary properties of spatial nonhomeomorphic mappings with an $s$-averaged characteristic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2016), pp. 16-30. http://geodesic.mathdoc.fr/item/VTGU_2016_3_a1/

[1] Vuorinen M., “On the Iversen–Tsuji theorem for quasiregular mappings”, Mathematica Scandinavica, 41 (1977), 90–98 | MR | Zbl

[2] Martio O., Rickman S., “Boundary behavior of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 507 (1972), 1–17 | MR

[3] Lavrentyev M. A., “On a certain differential characteristic of homeomorphic mappings of three-dimensional domains”, Dokl. Akad. Nauk SSSR, 20:4 (1938), 241–242

[4] Poleckii E.A, “On the removal of singularities of quasiconformal mappings”, Mathematics of the USSR-Sbornik, 21:2 (1973), 240–254 | DOI | MR | Zbl

[5] Alipova K. A., Elizarova M. A., Malyutina A. N., “Examples of the mappings with $s$-averaged characteristic”, Complex Analysis and Its Applications, Proc. of the International Conference, PetrGU Publ., Petrozavodsk, 2014, 12–17 (Accessed 14.05.2016) http://piccana.karelia.ru/_docs/2014/atezis14.pdf

[6] Malyutina A., Elizarova M., Mappings with $s$-averaged characteristic. Definition and properties, LAP LAMBERT Academic Publishing, 2013, 121 pp.

[7] Sychev A. V., Modules and spatial quasiconformal mappings, Nauka, Novosibirsk, 1983 | MR

[8] Poleckii E. A., “The modulus method for nonhomeomorphic quasiconformal mappings”, Mathematics of the USSR-Sbornik, 12:2 (1970), 260–270 | DOI

[9] Malyutina A. N., Krivosheina I. I., Batalova N. N., “Distortion of the spherical module of families of curves”, Researches on Mathematical Analysis and Algebra, 3, TGU Publ., Tomsk, 2001, 179–195

[10] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | DOI | MR | Zbl

[11] Väisälä J., “Removable sets for quasiconformal mappings in space”, J. Mech., 19:1 (1969), 49–51 | MR | Zbl

[12] Kruglikov V. I., Paykov V. I., “Continuous mappings with a finite Dirichlet integral”, Dokl. Akad. Nauk SSSR, 249:5 (1979), 1049–1052 | MR

[13] Reshetnyak Yu. G., Spatial mappings with bounded distortion, Nauka, Novosibirsk, 1982

[14] Väisälä J., “Two new characterization for quasiconformality”, Ann. Acad. Sci. Fenn. A1, 362 (1965), 1–12 | MR

[15] Malyutina A. N., Elizarova M. A., “Estimations of distortion of the modules for the mappings with $s$-average characteristic”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 2(10), 5–15

[16] Aseev V. V., “On a property of the modulus”, Dokl. Akad. Nauk SSSR, 200:3 (1971), 513–514 | MR | Zbl

[17] Martio O., Rickman S., Väisälä J., “Distortion and singularities for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1, 1970, no. 455, 1–13 | MR

[18] Ignat'ev A. A., Ryazanov V. I., “Finite mean oscillation in the theory of mappings”, Ukrainian mathematical bulletin, 2:3 (2005), 395–417 | MR | Zbl

[19] Martio O. et al., “A contribution to the theory of $Q$-homeomorphisms”, Dokl. Ross. Akad. Nauk, 381:1 (2001), 20–22 | MR | Zbl

[20] Martio O., Ryazanov V., Srebro U., Yakubov E., “Mappings with finite length distortion”, J. d'Anal. Math., 93 (2004), 215–236 | DOI | MR | Zbl

[21] Ryazanov V. I., Sevost'yanov E. A., “Equicontinuity of mean quasiconformal mappings”, Siberian Mathematical Journal, 52:3 (2011), 524–536 | DOI | MR | Zbl