Circulatory high-viscosity non-Newtonian fluid flow in a single-screw extruder channel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 97-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to definition of a width-to-depth ratio of a single-screw extruder channel when sidewalls do not affect the velocity profiles of circulatory high-viscosity non-Newtonian fluid flow at the mid of the channel. The channel has a rectangular cross-section. Power-law model is used to describe fluid behavior. The indirect boundary element method is used for numerical solution taking into account of sidewalls. Comparing of obtained velocity profiles with the known results showed a good agreement. Research is performed in the range of power-law index from 0.4 to 1.0. The method for obtaining the velocity component profiles for the case of shear-thinning fluid flow without considering influence of sidewalls is presented. The width-todepth ratio of a single-screw extruder channel when it is acceptable to neglect influence of sidewalls on flow at the mid of the channel is defined.
Keywords: single-screw extruder, non-Newtonian fluid, Indirect Boundary Element Method, flow in lid-driven cavity.
@article{VTGU_2016_2_a9,
     author = {M. A. Ponomareva and M. P. Filina and V. A. Yakutenok},
     title = {Circulatory high-viscosity {non-Newtonian} fluid flow in a single-screw extruder channel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {97--107},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_2_a9/}
}
TY  - JOUR
AU  - M. A. Ponomareva
AU  - M. P. Filina
AU  - V. A. Yakutenok
TI  - Circulatory high-viscosity non-Newtonian fluid flow in a single-screw extruder channel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 97
EP  - 107
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_2_a9/
LA  - ru
ID  - VTGU_2016_2_a9
ER  - 
%0 Journal Article
%A M. A. Ponomareva
%A M. P. Filina
%A V. A. Yakutenok
%T Circulatory high-viscosity non-Newtonian fluid flow in a single-screw extruder channel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 97-107
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2016_2_a9/
%G ru
%F VTGU_2016_2_a9
M. A. Ponomareva; M. P. Filina; V. A. Yakutenok. Circulatory high-viscosity non-Newtonian fluid flow in a single-screw extruder channel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 97-107. http://geodesic.mathdoc.fr/item/VTGU_2016_2_a9/

[1] Mikulionok I. O., “On modelling of worm extrusion”, Khimiya i khimicheskaya tekhnologiya — Chemistry and Chemical Technology, 54:12 (2011), 96–100

[2] Ostrikov A. N., Abramov O. V., “Mathematical model of the extrusion process at non-isothermal viscous flow in a single-screw extruder”, Izvestiya vysshikh uchebnykh zavedenii. Pishchevaya tekhnologiya — Food technology, 1999, no. 1, 49–52 | MR

[3] Sagirov S. N., “Analysis and modeling of polymers motion in a single screw extruder”, Tekhnicheskie nauki. Fundamental'nye issledovaniya — Technical science. Fundamental research, 2011, no. 12, 179–183

[4] Khametova M. G., “Description of steady-state, nonisothermal flow of a non-Newtonian fluid in a single-screw extruder”, Vestnik SGTU. Problemy estestvennykh nauk — SSTU Journal of Natural Sciences Problems, 2012, no. 1(64), 15–19

[5] Covas J. A., Costa P. A., “A miniature extrusion line for small scale processing studies”, Polymer Testing, 23 (2004), 763–773 | DOI

[6] Sokolov M. V., Klinkov A. S., Efremov O. V., Computer-aided design of screw extruders, Mashinostroenie-1, M., 2004

[7] Kerzhentsev V. A., Kurseitov S. I., Kurseitova E. S., “Choosing the screw channel geometry for mass extrusion in a screw extruder”, Production Process Mechanization of Fish Farm, Industrial, and Agrarian Enterprises, 7, KMIT publishing house, Kerch, 2006, 130–136

[8] Tadmor Z., Gogos C. G., Principles of polymer processing, John Wiley Sons, New York, 1979

[9] Ponomareva M. A., Filina M. P., Yakutenok V. A., “Non-Newtonian fluid flow in a liddriven cavity at low Reynolds numbers”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 6(38), 90–100

[10] Yankov V. I., Boyarchenko V. I., Pervadchuk V. P., Fiber-forming polymer processing, v. 2, R Dynamics, M.–Izhevsk, 2005

[11] Ponomareva M. A., Filina M. P., Yakutenok V. A., “The indirect boundary element method for the two-dimensional pressure- and gravity-driven free surface Stokes flow”, WIT Transactions on Modelling and Simulation, 57 (2014), 289–304 | DOI | MR | Zbl

[12] Brebbia C. A., Telles J. C. F., Wrobel L. C., Boundary element techniques, Springer-Verlag, Berlin–Heidelberg–New York, 1984 | MR | Zbl

[13] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1963 | MR | MR | Zbl

[14] Yakutenok V. A., “Numerical simulation of viscous, free-surface, creeping flow with boundary element method”, Mat. modelirovanie — Mathematical Models, 4:10 (1992), 62–70 | Zbl