Simulation of the nonlinear magnetic strain effect for a flexible ferroelastic plate in a uniform magnetic field
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 82-96
Cet article a éte moissonné depuis la source Math-Net.Ru
We studied the problem of magnetoelastic buckling of thin flexible rectangular ferroelastic plates under the action of a uniform transverse magnetic field in the geometrically nonlinear statement. A ferroelastic material is a magnetical material capable of large deformations controlled by an external magnetic field. Ferroelastic plates can act as sensitive elements of sensors in microelectromechanical systems (MEMSs). Designing these devices requires understanding the mechanical behavior of these systems in an external magnetic field. Possibilities of the new method of introducing new special functions which are basic for studying the problem and generalize elliptic integrals and Jacobi elliptic functions are demonstrated. Using the introduced functions, an analytical solution of the nonlinear boundary value problem has been written and multi-valued solution branches (modes) describing the shape of the plate buckling depending on the external magnetic field have been found. The threshold effect is shown and critical values of the external magnetic field strength are determined (in the sense of Euler stability). The obtained analytical solution allows one to visualize forms of plate buckling and to estimate the magnitude of plate deflection depending on the magnitude of the external field and its geometrical and physical parameters. The presented results make it possible to simulate magnetoelastic systems used in various micromechanical devices and sensors in the case requiring an exact consideration of the geometric nonlinearity.
Keywords:
ferroelastic material, geometric nonlinearity, magnetic strain effect, special functions.
@article{VTGU_2016_2_a8,
author = {K. G. Okhotkin},
title = {Simulation of the nonlinear magnetic strain effect for a flexible ferroelastic plate in a uniform magnetic field},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {82--96},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2016_2_a8/}
}
TY - JOUR AU - K. G. Okhotkin TI - Simulation of the nonlinear magnetic strain effect for a flexible ferroelastic plate in a uniform magnetic field JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2016 SP - 82 EP - 96 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTGU_2016_2_a8/ LA - ru ID - VTGU_2016_2_a8 ER -
%0 Journal Article %A K. G. Okhotkin %T Simulation of the nonlinear magnetic strain effect for a flexible ferroelastic plate in a uniform magnetic field %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2016 %P 82-96 %N 2 %U http://geodesic.mathdoc.fr/item/VTGU_2016_2_a8/ %G ru %F VTGU_2016_2_a8
K. G. Okhotkin. Simulation of the nonlinear magnetic strain effect for a flexible ferroelastic plate in a uniform magnetic field. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 82-96. http://geodesic.mathdoc.fr/item/VTGU_2016_2_a8/
[1] Alekseeva E. I., Gorbunov A. I., Kramarenko E. Yu., Levina E. F., Raykher Yu. L., Stepanov G. V., Stolbov O. V., “Deformation of a flat ferroelast membrane fixed over the rim in a uniform magnetic field”, Winter School on Continuum Mechanics, v. 1, 2007, 31–34
[2] Stolbov O. V., Simulation of the magnetic strain effect in ferroelasts, Abstract of Physics Cand. Diss., ICMM UB RAS, Perm, 2007
[3] Ambartsumyan S. A., Bagdasaryan G. E., Belubekyan M. V., Magnetoelasticity of thin shells and plates, Nauka, M., 1977
[4] Zakharov Yu. V., Okhotkin K. G., “Nonlinear bending of thin elastic rods”, Journal of Applied Mechanics and Technical Physics, 43:5 (2002), 739–744 | DOI | Zbl