Numerical simulation of the steady-state Herschel–Bulkley fluid flow in a channel with sudden expansion
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 68-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the steady-state flow of a non-Newtonian fluid in a planar channel with sudden expansion is investigated. The rheological behavior of this media is described by the Herschel–Bulkley model. To determine the static velocity and pressure fields, a numerical algorithm based on the relaxation method and SIMPLE procedure are used. The MPI technique of parallel programming is used to accelerate the computation. Regularization of the rheological model is used to provide algorithm stability and limit viscosity increase at low deformation rates. The mathematical problem statement involves non-dimensional parameters: the Reynolds number, Bingham number (non-dimensional viscoplasticity parameter), and power-law index. We report results of numerical simulation in a range of $1 \leqslant \mathrm{Re} \leqslant 40$ for the Reynolds number, $0 \leqslant \mathrm{Se} \leqslant 2$ for the Bingham number, and $0.4 \leqslant k \leqslant 2$ for the power-law index (shear thinning and shear thickening fluids). Main characteristic distribution of the fluid flow with a two-dimensional localization in the expansion zone is presented. The impact of main parameters of the problem on the dead zone distribution in the fluid flow is shown.
Keywords: fluid flow, channel with sudden expansion, numerical simulation, Herschel–Bulkley model, dead zone.
@article{VTGU_2016_1_a7,
     author = {E. I. Borzenko and E. I. Hegaj},
     title = {Numerical simulation of the steady-state {Herschel{\textendash}Bulkley} fluid flow in a channel with sudden expansion},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {68--81},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_1_a7/}
}
TY  - JOUR
AU  - E. I. Borzenko
AU  - E. I. Hegaj
TI  - Numerical simulation of the steady-state Herschel–Bulkley fluid flow in a channel with sudden expansion
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 68
EP  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_1_a7/
LA  - ru
ID  - VTGU_2016_1_a7
ER  - 
%0 Journal Article
%A E. I. Borzenko
%A E. I. Hegaj
%T Numerical simulation of the steady-state Herschel–Bulkley fluid flow in a channel with sudden expansion
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 68-81
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2016_1_a7/
%G ru
%F VTGU_2016_1_a7
E. I. Borzenko; E. I. Hegaj. Numerical simulation of the steady-state Herschel–Bulkley fluid flow in a channel with sudden expansion. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 68-81. http://geodesic.mathdoc.fr/item/VTGU_2016_1_a7/

[1] Patel S. A., Chhabra R. P., “Steady flow of Bingham plastic fluids past an elliptical cylinder”, Journal of Non-Newtonian Fluid Mechanics, 202 (2013), 32–53 | DOI

[2] Ying-Hsin Wua, Ko-Fei Liu, “Start-up flow of a Bingham fluid between two coaxial cylinders under a constant wall shear stress”, J. Non-Newtonian Fluid Mechanics, 223 (2015), 116–121 | DOI

[3] Damianou Y., Georgiou G. C., Moulitsas I., “Combined effects of compressibility and slip in flows of a Herschel–Bulkley fluid”, J. Non-Newtonian Fluid Mechanics, 193 (2013), 89–102 | DOI

[4] Ferrás L. L., Afonso A. M., Alves M. A., Nóbrega J. M., Carneiro O. S., Pinho F. T., “Slip flows of Newtonian and viscoelastic fluids in a 4:1 contraction”, J. Non-Newtonian Fluid Mechanics, 214 (2014), 28–37 | DOI

[5] Link F. B., Frey S., Thompson R. L., Naccache M. F., de Souza Mendes P. R., “Plane flow of thixotropic elasto-viscoplastic materials through a 1:4 sudden expansion”, J. Non-Newtonian Fluid Mechanics, 220 (2015), 162–174 | DOI

[6] Ternik P., “Planar sudden symmetric expansion flows and bifurcation phenomena of purely viscous shear-thinning fluids”, J. Non-Newtonian Fluid Mechanics, 157 (2009), 15–25 | DOI | Zbl

[7] Dhinakaran S., Oliveira M. S. N., Pinho F. T., Alves M. A., “Steady flow of power-law fluids in a 1:3 planar sudden expansion”, J. Non-Newtonian Fluid Mechanics, 198 (2013), 48–58 | DOI

[8] Hermany L., Dall'Onder dos Santos D., Frey S., Naccache M. F., de Souza Mendes P. R., “Flow of yield-stress liquids through an axisymmetric abrupt expansion-contraction”, J. Non-Newtonian Fluid Mechanics, 201 (2013), 1–9 | DOI

[9] Coussot P., “Yield stress fluid flows: A review of experimental data”, J. Non-Newtonian Fluid Mechanics, 211 (2014), 31–49 | DOI

[10] Pérez-Camacho M., López-Aguilar J. E., Calderas F., Manero O., Webster M. F., “Pressure-drop and kinematics of viscoelastic flow through an axisymmetric contraction-expansion geometry with various contraction-ratios”, J. Non-Newtonian Fluid Mechanics, 222 (2015), 260–271 | DOI

[11] Mossaz S., Jay P., Magnin A., “Experimental study of stationary inertial flows of a yield-stress fluid around a cylinder”, J. Non-Newtonian Fluid Mechanics, 189–190 (2012), 40–52 | DOI

[12] Ovarlez G., Cohen-Addad S., Krishan K., Goyon J., Coussot P., “On the existence of a simple yield stress fluid behavior”, J. Non-Newtonian Fluid Mechanics, 193 (2013), 68–79 | DOI

[13] Maillard M., Boujlel J., Coussot P., “Flow characteristics around a plate withdrawn from a bath of yield stress fluid”, J. Non-Newtonian Fluid Mechanics, 220 (2015), 33–43 | DOI

[14] Smol'skiy B. M., Shul'man Z. P., Gorislavets V. M., Reodinamika i teploobmen nelineynovyazkoplastichnykh materialov, Nauka i tekhnika Publ., Minsk, 1970 (in Russian)

[15] Godunov S. K., Ryaben'kiy V. S., Raznostnye skhemy, Nauka Publ., M., 1977, 440 pp. (in Russian)

[16] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat Publ., M., 1984, 152 pp. (in Russian)

[17] Frigaard I. A., Nouar C., “On the usage of viscosity regularisation methods for visco-plastic fluid flow computation”, J. Non-Newtonian Fluid Mechanics, 127 (2005), 1–26 | DOI | Zbl