On the homeomorphism of the Sorgenfrey line and its modifications $S_{\mathcal{Q}}$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 53-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, it is proved that two topological spaces, namely, the Sorgenfrey line $S$ and its modifications $S_{\mathcal{Q}}$, where $\mathcal{Q}$ is the set of rational numbers on the real line, are nonhomeomorphic. Topology of the space $S_{\mathcal{Q}}$ is defined as follows: if $x\in\mathcal{Q}\subset S$, then the base of neighborhoods of the point $x$ is the family of semiintervals $\{[x, x+\varepsilon):\varepsilon>0\}$, and if $x\in S\setminus\mathcal{Q}$, then the base of the neighborhood is a family of semiintervals $\{(x-\varepsilon, x]:\varepsilon>0\}$. The proof of this fact uses monotonicity of the homeomorphism $\varphi: S\to S$ on some interval $(a, b)\subset S$ (E. K. Van Douwen, 1979).
Keywords: Sorgenfrey line, homeomorphism, first category set.
Mots-clés : Baire space
@article{VTGU_2016_1_a5,
     author = {T. E. Khmyleva},
     title = {On the homeomorphism of the {Sorgenfrey} line and its modifications $S_{\mathcal{Q}}$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {53--56},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_1_a5/}
}
TY  - JOUR
AU  - T. E. Khmyleva
TI  - On the homeomorphism of the Sorgenfrey line and its modifications $S_{\mathcal{Q}}$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 53
EP  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_1_a5/
LA  - ru
ID  - VTGU_2016_1_a5
ER  - 
%0 Journal Article
%A T. E. Khmyleva
%T On the homeomorphism of the Sorgenfrey line and its modifications $S_{\mathcal{Q}}$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 53-56
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2016_1_a5/
%G ru
%F VTGU_2016_1_a5
T. E. Khmyleva. On the homeomorphism of the Sorgenfrey line and its modifications $S_{\mathcal{Q}}$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 53-56. http://geodesic.mathdoc.fr/item/VTGU_2016_1_a5/

[1] Van Douwen E. K., “Retracts of the Sorgenfrey line”, Compositio Mathematica, 38:2 (1979), 155–161 | MR | Zbl

[2] Chatyrko V. A., Hattori Y., “A poset of topologies on the set of real numbers”, Comment. Math. Univ. Carolin., 54:2 (2013), 189–196 | MR | Zbl

[3] Khmyleva T. E., Sukhacheva E. S., “O nekotorykh lineyno uporyadochennykh topologicheskikh prostranstvakh, gomeomorfnykh pryamoy Zorgenfreya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 5

[4] Tkachuk V. V., Cp-theory Problem Book. Topological and functional analysis, Springer, 2015 | MR

[5] Burke D. K., Moore J. T., “Subspaces of the Sorgenfrey line”, Topology and its Applications, 90:1 (1998), 57–68 | DOI | MR | Zbl