Mots-clés : bisingular perturbation, elliptic type equation
@article{VTGU_2016_1_a4,
author = {D. A. Tursunov and U. Z. Erkebaev},
title = {Asymptotic expansion of the solution of the {Dirichlet} problem for a ring with a singularity on the boundary},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {42--52},
year = {2016},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2016_1_a4/}
}
TY - JOUR AU - D. A. Tursunov AU - U. Z. Erkebaev TI - Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2016 SP - 42 EP - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTGU_2016_1_a4/ LA - ru ID - VTGU_2016_1_a4 ER -
%0 Journal Article %A D. A. Tursunov %A U. Z. Erkebaev %T Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2016 %P 42-52 %N 1 %U http://geodesic.mathdoc.fr/item/VTGU_2016_1_a4/ %G ru %F VTGU_2016_1_a4
D. A. Tursunov; U. Z. Erkebaev. Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 42-52. http://geodesic.mathdoc.fr/item/VTGU_2016_1_a4/
[1] Gilbarg D., Trudinger N., Ellipticheskie differentsial'nye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka Publ., M., 1989, 464 pp. (in Russian) | MR
[2] Levinson N., “The first boundary value problem for $\varepsilon\Delta u+Au_x+Bu_y+Cu=D$ for small $\varepsilon$”, Ann. of Math., 51 (1950), 428–445 | MR | Zbl
[3] Eckhaus W., “Boundary layers in linear elliptic singular perturbation problems”, SIAM Review, 14:2 (1972), 225–270 | DOI | MR | Zbl
[4] Shagi-di Shih, Kellogg R. B., “Asymptotic analysis of a singular perturbation problem”, SIAM J. Math. Anal., 18:5 (1987), 1467–1511 | DOI | MR | Zbl
[5] Butuzov V. F., Denisov I. V., “Uglovoy pogranichnyy sloy v nelineynykh ellipticheskikh zadachakh, soderzhashchikh proizvodnye pervogo poryadka”, Model. i analiz informatsionnykh sistem, 21:1 (2014), 7–31 (in Russian)
[6] Butuzov V. F., Levashova N. T., Mel'nikova A. A., “Kontrastnaya struktura tipa stupen'ki v singulyarno vozmushchennoy sisteme ellipticheskikh uravneniy”, ZhVM i MF, 53:9 (2013), 1427–1447 (in Russian) | Zbl
[7] Beloshapko V. A., Butuzov V. F., “Singulyarno vozmushchennaya ellipticheskaya zadacha v sluchae kratnogo kornya vyrozhdennogo uravneniya”, ZhVM i MF, 53:8 (2013), 1291–1301 (in Russian) | MR | Zbl
[8] Il'in A. M., Soglasovanie asimptoticheskikh razlozheniy kraevykh zadach, Nauka Publ., M., 1989, 334 pp. (in Russian)
[9] Lelikova E. F., “Ob asimptotike resheniya odnogo uravneniya s malym parametrom pri chasti starshikh proizvodnykh”, Tr. IMM UrO RAN, 18, no. 2, 2012, 170–178 (in Russian) | MR
[10] Alymkulov K., “Method of boundary layer function to solve the boundary value problem for a singularly perturbed differential equation of the order two with a turning point”, Universal J. Appl. Math., 2:3 (2014), 119–124
[11] Alymkulov K., Asylbekov T. D., Dolbeeva S. F., “Obobshchenie metoda pogranfunktsiy dlya resheniya kraevoy zadachi dlya bisingulyarno vozmushchennogo differentsial'nogo uravneniya vtorogo poryadka”, Matematicheskie zametki, 94:3 (2013), 483–487 (in Russian) | DOI | Zbl
[12] Tursunov D. A., “Asimptoticheskoe razlozhenie resheniya bisingulyarno vozmushchennogo ellipticheskogo uravneniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 6(26), 37–44 (in Russian)
[13] Tursunov D. A., “Asimptotika resheniya bisingulyarno vozmushchennogo ellipticheskogo uravneniya. Sluchay osoboy tochki na granitse”, Izvestiya Tomskogo politekhnicheskogo universiteta, 324:2 (2014), 31–35 (in Russian)
[14] Tursunov D. A., Belekov K. J., “Asymptotic expansion of the solution of the Dirichlet problem for bisingular perturbed elliptic equations in domains with smooth boundaries”, Proc. of V Congress of the Turkic World Mathematicians (Kyrgyzstan, Bulan-Sogottu, 5–7 June, 2014), ed. A. Borubaev, Kyrgyz Mathematical Society, Bishkek, 2014, 143–147 | MR