On linear homeomorphisms of spaces of continuous functions on «long lines»
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 36-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we prove that for the elementary regular ordinal and arbitrary ordinals $\alpha$, $\beta$, $\alpha<\beta\leqslant \tau$, the spaces of continuous functions $C_p(L_{\tau\cdot\alpha})$ and $C_p(L_{\tau\cdot\beta})$, defined on the "long lines" $L_{\tau\cdot\alpha}$ and $L_{\tau\cdot\beta}$, are not linearly homeomorphic.
Keywords: «long lines», linear homeomorphisms, dual space, ordinals, initial ordinal, regular ordinal, topology of pointwise convergence, compactness.
@article{VTGU_2016_1_a3,
     author = {N. N. Trofimenko},
     title = {On linear homeomorphisms of spaces of continuous functions on {\guillemotleft}long lines{\guillemotright}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {36--41},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_1_a3/}
}
TY  - JOUR
AU  - N. N. Trofimenko
TI  - On linear homeomorphisms of spaces of continuous functions on «long lines»
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 36
EP  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_1_a3/
LA  - ru
ID  - VTGU_2016_1_a3
ER  - 
%0 Journal Article
%A N. N. Trofimenko
%T On linear homeomorphisms of spaces of continuous functions on «long lines»
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 36-41
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2016_1_a3/
%G ru
%F VTGU_2016_1_a3
N. N. Trofimenko. On linear homeomorphisms of spaces of continuous functions on «long lines». Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 36-41. http://geodesic.mathdoc.fr/item/VTGU_2016_1_a3/

[1] Engel'king R., Obshchaya topologiya, Mir Publ., M., 1986, 752 pp. (in Russian) | MR

[2] Bessaga C., Pelczynski S., “On isomorphic classification of spaces of continuos functions”, Studia Math., 19 (1960), 53–62 | MR | Zbl

[3] Semadeni Z., “Banach spaces non-isomorphic to their Cartesian product”, Bulletin of the Polish Academy of Sciences Ser. Math. Stron. et Phys., 8 (1960), 81–84 | MR | Zbl

[4] Gul'ko S. P., Os'kin A. V., “Izomorfnaya klassifikatsiya prostranstv nepreryvnykh funktsiy na vpolne uporyadochennykh bikompaktakh”, Funktsional'nyy analiz i ego prilozheniya, 9:1 (1975), 61–62 (in Russian) | MR

[5] Kislyakov S. V., “Izomorfnaya klassifikatsiya prostranstv nepreryvnykh funktsiy na ordinalakh”, Sib. mat. zhurn., 16 (1975), 293–300 (in Russian) | MR | Zbl

[6] Kalenda O., “Note on Markushevich bases in subspaces and quotients of Banach spaces”, Bulletin of the Polish Academy of Sciences. Mathematics, 50:2 (2002), 117–126 | MR | Zbl

[7] Arkhangel'skiy A. V., “O lineynykh gomeomorfizmakh prostranstv funktsiy”, DAN SSSR, 264:6 (1982), 1289–1292 (in Russian) | MR | Zbl

[8] Kuratovskiy K., Mostovskiy A., Teoriya mnozhestv, Mir Publ., M., 1970, 416 pp. (in Russian) | MR