Modified method of successive conformal mappings of polygonal domains
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 25-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method for solving the inverse Schwarz–Christoffel problem — conformal mapping of a given polygonal area on the canonical domain, the unit circle — is developed in the paper. The method is based on the use of a sequence of conformal mappings related to the mapping of the polygon onto the upper half with discarded segments by a Cayley linear fractional transformation followed by sequential addition of the discarded segments to the upper half-plane. Model problems consider conformal mappings of circular, elliptical, and hyperbolic lunes to the upper half-plane. The solution of the presented model problems is based on the generalized Zhukovsky function; the obtained results expand the applicability of the Zhukovsky function as compared to existing methods of its application in the implementation of conformal mappings. The working ability of the solution was tested by specific examples in solving the problem of conformal mapping of quadrilateral and heptagonal domains to the unit circle. Recommendations for the algorithmic implementation of the method are presented.
Keywords: conformal mapping, unit circle, inverse Schwarz–Christoffel problem.
Mots-clés : polygonal domain
@article{VTGU_2016_1_a2,
     author = {V. M. Radygin and I. S. Polansky},
     title = {Modified method of successive conformal mappings of polygonal domains},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {25--35},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_1_a2/}
}
TY  - JOUR
AU  - V. M. Radygin
AU  - I. S. Polansky
TI  - Modified method of successive conformal mappings of polygonal domains
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 25
EP  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_1_a2/
LA  - ru
ID  - VTGU_2016_1_a2
ER  - 
%0 Journal Article
%A V. M. Radygin
%A I. S. Polansky
%T Modified method of successive conformal mappings of polygonal domains
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 25-35
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2016_1_a2/
%G ru
%F VTGU_2016_1_a2
V. M. Radygin; I. S. Polansky. Modified method of successive conformal mappings of polygonal domains. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 25-35. http://geodesic.mathdoc.fr/item/VTGU_2016_1_a2/

[1] Fil'chakov P. F., Priblizhennye metody konformnykh otobrazheniy. Spravochnoe rukovodstvo, Naukova dumka Publ., Kiev, 1964, 536 pp. (in Russian)

[2] Lavrent'ev M. A., Shabat B. V., Metody teorii funktsiy kompleksnogo peremennogo, Nauka Publ., M., 1973, 736 pp. (in Russian) | MR

[3] Ivanov V. I., Popov Yu. V., Konformnye otobrazheniya i ikh prilozheniya, Editorial URSS Publ., M., 2002, 374 pp. (in Russian)

[4] Driscoll T. A., Trefethen L. N., Schwarz–Christoffel mapping, Cambridge University Press, Cambridge, UK, 2002, 132 pp. | MR | Zbl

[5] Kantorovich L. V., “Effektivnye metody v teorii konformnykh otobrazheniy”, Izv. AN SSSR. Ser. matem., 1:1 (1937), 79–90 (in Russian)

[6] Arkhipov N. S., Polyanskiy I. S., Stepanov D. E., “Baritsentricheskiy metod v zadachakh analiza polya v regulyarnom volnovode s proizvol'nym poperechnym secheniem”, Antenny, 2015, no. 1(212), 32–40 (in Russian) | MR

[7] Polyanskiy I. S., “Baritsentricheskie koordinaty Puassona dlya mnogomernoy approksimatsii skalyarnogo potentsiala vnutri proizvol'noy oblasti, 1”, Vestnik SGTU, 2015, no. 1(78), 30–36 (in Russian) | MR

[8] Polyanskiy I. S., “Baritsentricheskie koordinaty Puassona dlya mnogomernoy approksimatsii skalyarnogo potentsiala vnutri proizvol'noy oblasti, 2”, Vestnik SGTU, 2015, no. 1(78), 36–42 (in Russian) | MR

[9] Smirnov V. I., Kurs vysshey matematiki, part 2, v. 3, Nauka Publ., M., 1974, 672 pp. (in Russian)

[10] Golovanov N. N., Geometricheskoe modelirovanie, IFML Publ., M., 2002, 472 pp. (in Russian)