Mots-clés : polygonal domain
@article{VTGU_2016_1_a2,
author = {V. M. Radygin and I. S. Polansky},
title = {Modified method of successive conformal mappings of polygonal domains},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {25--35},
year = {2016},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2016_1_a2/}
}
TY - JOUR AU - V. M. Radygin AU - I. S. Polansky TI - Modified method of successive conformal mappings of polygonal domains JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2016 SP - 25 EP - 35 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTGU_2016_1_a2/ LA - ru ID - VTGU_2016_1_a2 ER -
V. M. Radygin; I. S. Polansky. Modified method of successive conformal mappings of polygonal domains. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 25-35. http://geodesic.mathdoc.fr/item/VTGU_2016_1_a2/
[1] Fil'chakov P. F., Priblizhennye metody konformnykh otobrazheniy. Spravochnoe rukovodstvo, Naukova dumka Publ., Kiev, 1964, 536 pp. (in Russian)
[2] Lavrent'ev M. A., Shabat B. V., Metody teorii funktsiy kompleksnogo peremennogo, Nauka Publ., M., 1973, 736 pp. (in Russian) | MR
[3] Ivanov V. I., Popov Yu. V., Konformnye otobrazheniya i ikh prilozheniya, Editorial URSS Publ., M., 2002, 374 pp. (in Russian)
[4] Driscoll T. A., Trefethen L. N., Schwarz–Christoffel mapping, Cambridge University Press, Cambridge, UK, 2002, 132 pp. | MR | Zbl
[5] Kantorovich L. V., “Effektivnye metody v teorii konformnykh otobrazheniy”, Izv. AN SSSR. Ser. matem., 1:1 (1937), 79–90 (in Russian)
[6] Arkhipov N. S., Polyanskiy I. S., Stepanov D. E., “Baritsentricheskiy metod v zadachakh analiza polya v regulyarnom volnovode s proizvol'nym poperechnym secheniem”, Antenny, 2015, no. 1(212), 32–40 (in Russian) | MR
[7] Polyanskiy I. S., “Baritsentricheskie koordinaty Puassona dlya mnogomernoy approksimatsii skalyarnogo potentsiala vnutri proizvol'noy oblasti, 1”, Vestnik SGTU, 2015, no. 1(78), 30–36 (in Russian) | MR
[8] Polyanskiy I. S., “Baritsentricheskie koordinaty Puassona dlya mnogomernoy approksimatsii skalyarnogo potentsiala vnutri proizvol'noy oblasti, 2”, Vestnik SGTU, 2015, no. 1(78), 36–42 (in Russian) | MR
[9] Smirnov V. I., Kurs vysshey matematiki, part 2, v. 3, Nauka Publ., M., 1974, 672 pp. (in Russian)
[10] Golovanov N. N., Geometricheskoe modelirovanie, IFML Publ., M., 2002, 472 pp. (in Russian)