On an invariant of surface mapping as applied to metallic mesh tailoring
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 13-24
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As in previous publications, the authors establish a goal to study tailoring of a metallic mesh to form an axially symmetric parabolic reflector. The tailoring is identified with a one-to-one mapping of a plane onto a part of a paraboloid of revolution. This representation of tailoring has a strong but inevitable idealization. The issue of a comparison criterion for two tailoring schemes is deemed important. In general terms this refers to a criterion of mapping a surface to surface. The mapping defect criterion proposed by the authors is not perfect — like any other criterion. In any case, it makes it possible to answer the question: in what sense one mapping is preferable to another. The article gives examples of the criterion’s application.
Keywords: parabolic reflector, metallic mesh, mapping of surfaces, defect of surface-to-surface mapping, approximation.
@article{VTGU_2016_1_a1,
     author = {M. S. Bukhtyak and A. V. Solomina},
     title = {On an invariant of surface mapping as applied to metallic mesh tailoring},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {13--24},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_1_a1/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
AU  - A. V. Solomina
TI  - On an invariant of surface mapping as applied to metallic mesh tailoring
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 13
EP  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_1_a1/
LA  - ru
ID  - VTGU_2016_1_a1
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%A A. V. Solomina
%T On an invariant of surface mapping as applied to metallic mesh tailoring
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 13-24
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2016_1_a1/
%G ru
%F VTGU_2016_1_a1
M. S. Bukhtyak; A. V. Solomina. On an invariant of surface mapping as applied to metallic mesh tailoring. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 13-24. http://geodesic.mathdoc.fr/item/VTGU_2016_1_a1/

[1] Bukhtyak M. S., Solomina A. V., “Geometricheskoe modelirovanie raskroya setepolotna dlya osesimmetrichnogo reflektora. Chast' 1”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 2(34), 5–17 (in Russian) | DOI

[2] Bukhtyak M. S., Solomina A. V., “Geometricheskoe modelirovanie raskroya setepolotna dlya osesimmetrichnogo reflektora. Chast' 2”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 4(36), 5–14 (in Russian) | DOI

[3] Bukhtyak M. S., “Normal'naya kongruentsiya paraboloida. Demikvadriki”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 5(37), 5–14 (in Russian) | DOI

[4] Kagan V. F., Osnovy teorii poverkhnostey, OGIZ GITTL Publ., M.–L., 1948, 407 pp. (in Russian) | MR

[5] Luchinin A. A., “O parakh $m$-poverkhnostey v $n$-mernom proektivnom prostranstve”, Geom. sb., 9, Izd-vo TGU, Tomsk, 1972, 21–29 (in Russian) | MR

[6] Cheshkova M. A., “O pare poverkhnostey v evklidovom prostranstve”, Matematicheskie zametki, 75:3 (2004), 474–475 (in Russian) | DOI

[7] Gryanik M. V., Loman V. I., Razvertyvaemye zerkalnye antenny zontichnogo tipa, Radio i sviaz, M., 1987, 72 pp. (in Russian)