Two-point invariants of groups of motions in some phenomenologically symmetric two-dimensional geometries
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In G.G. Mikhaylichenko's classification, along with the well-known geometries, such as the Euclidean plane, Minkowsky plane, two-dimensional sphere, and others, there are two-dimensional Helmholtz type geometries in which the circle does not have the usual pattern, as evidenced by Helmholtz in his work “On the Facts Underlying Geometry”, as well as the simplicial plane. All these geometries are endowed by group and phenomenological symmetries. The essence of the phenomenological symmetry is in the link between all the mutual distances for a finite number of points. The paper describes a complete system of non-degenerate two-point invariants of groups of motions for some phenomenologically symmetric two-dimensional geometries (Helmholtz plane, pseudo-Helmholtz plane, dual-Helmholtz plane, and simplicial plane) as a solution of corresponding functional equations for a set of two-point invariants of transformation groups. The paper found that every two-point invariant of motion groups of the aforementioned geometries coincides with the metric function of the corresponding plane up to a smooth transformation $\psi(f)\to f$.
Keywords: phenomenologically symmetric two-dimensional geometry, local group of motions, two-point invariant, functional equation.
@article{VTGU_2016_1_a0,
     author = {R. A. Bogdanova},
     title = {Two-point invariants of groups of motions in some phenomenologically symmetric two-dimensional geometries},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--12},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_1_a0/}
}
TY  - JOUR
AU  - R. A. Bogdanova
TI  - Two-point invariants of groups of motions in some phenomenologically symmetric two-dimensional geometries
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 5
EP  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_1_a0/
LA  - ru
ID  - VTGU_2016_1_a0
ER  - 
%0 Journal Article
%A R. A. Bogdanova
%T Two-point invariants of groups of motions in some phenomenologically symmetric two-dimensional geometries
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 5-12
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2016_1_a0/
%G ru
%F VTGU_2016_1_a0
R. A. Bogdanova. Two-point invariants of groups of motions in some phenomenologically symmetric two-dimensional geometries. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2016), pp. 5-12. http://geodesic.mathdoc.fr/item/VTGU_2016_1_a0/

[1] Bogdanova R. A., “Gruppy dvizheniy dvumernykh gel'mgol'tsevykh geometriy kak reshenie funktsional'nogo uravneniya”, Sibirskiy zhurnal industrial'noy matematiki, 12:4 (2009), 12–22 (in Russian)

[2] Bogdanova R. A., “Gruppa dvizheniy simplitsial'noy ploskosti kak reshenie funktsional'nogo uravneniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 4(30), 5–13 (in Russian)

[3] Michailichenko G. G., “On group and phenomenological simmetries in geometry”, Soviet Math. Dokl., 27:2 (1983), 325–326 | MR | Zbl

[4] Mikhaylichenko G. G., Dvumernye geometrii, Izd-vo Barnaul'skogo gosudarstvennogo pedagogicheskogo universiteta, Barnaul, 2004 (in Russian)

[5] Kulakov Yu. I., Teoriya fizicheskikh struktur, Dominiko Publ., M., 2004 (in Russian)

[6] Kulakov Yu. I., “Geometriya prostranstv postoyannoy krivizny kak chastnyy sluchay teorii fizicheskikh struktur”, Dokl. AN SSSR, 193:5 (1970), 985–987 (in Russian) | MR | Zbl

[7] Gel'mgol'ts G., “O faktakh, lezhashchikh v osnovanii geometrii”, Ob osnovaniyakh geometrii. M, M., 1956, 366–388 (in Russian)