On odd perfect numbers
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 5-18
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A perfect number is a natural number equal to the sum of all its proper divisors (all positive divisors other than the number itself). Perfect numbers form a sequence: $6, 28, 496, 8128, 33550336, 8589869056, 137438691328~\dots$
Let $S=p_1^{a_1}\cdot p_2^{a_2}\cdots p_{n-1}^{a_{n-1}}\cdot p_n^{a_n}$  be a perfect number, where  $p_i$ are primes,  $a_i$ are some natural numbers,  $a_i\geqslant 1$,  $i=1, \dots, n$, and  $n$ is the number of factors of the number $S$. Then
\begin{equation}
\frac{p_1^{1+a_1}-1}{(p_1-1)p_1^{a_1}}\cdot
\frac{p_2^{1+a_2}-1}{(p_2-1)^*p_2^{a_2}}\cdots
\frac{p_n^{1+a_n}-1}{(p_n-1)^*p_n^{a_n}}=2.
\end{equation} Equation (1) is a Diophantine equation with an indefinite number of unknowns; it contains $2n$
unknowns, the value of  $n$ (the number of factors of the number) is not fixed. This equation is
equivalent to the two systems:
\begin{equation}
\left\{\begin{aligned}
p_1=\frac1{\mathcal{Q}_1-1}\geqslant2,  =\frac{-\ln(\mathcal{Q}_1-p_1(\mathcal{Q}_1-1))}{\ln(p_1)}\geqslant1;\\
 \dots;\\
p_n=\frac1{\mathcal{Q}_n-1}\geqslant p(n),   a_n=\frac{-\ln(\mathcal{Q}_n-p_n(\mathcal{Q}_n-1))}{\ln(p_n)}\geqslant1,\\
\end{aligned}\right. 
\end{equation}
where
$$
\begin{gathered}
\mathcal{Q}_i=2\frac{(p_1-1)p_1^{a_1}}{p_1^{1+a_1}-1}\cdots
\frac{(p_{i-1}-1)p_{i-1}^{a_{i-1}}}{p_{i-1}^{1+a_{i-1}}-1}\cdot
\frac{(p_{i+1}-1)p_{i+1}^{a_{i+1}}}{p_{i+1}^{1+a_{i+1}}-1}\cdots
\frac{(p_n-1)p_n^{a_n}}{p_n^{1+a_n}-1}=\\
=2\prod_{j=1}^{n\backslash i}\frac{(p_j-1)p_j^{a_j}}{p_j^{1+a_j}-1};\quad i=1,\dots,n,
\end{gathered}
$$
and
\begin{equation}
\left\{\begin{aligned}
\frac{p_1^{1+a_1}-1}{(p_1-1)}=2^{\delta(a_1,p_1)}\prod_{j=1}^{n\backslash1}p_i^{a^{(1,j)}(a_1,p_1)};\dots;\\
\frac{p_n^{1+a_n}-1}{(p_n-1)}=2^{\delta(a_n,p_n)}\prod_{j=1}^{n-1}p_i^{a^{(n,j)}(a_n,p_n)};\quad \sum_{j=1}^n a^{(j)}=a_i; \quad i=1,\dots,n,
\end{aligned}
\right.
\end{equation}
where $\delta(a_1,p_1)$ is formally defined as follows:
$$
\delta(a_1,p_1)=
\begin{cases}
0,  \text{ if } p_1=2,\\
0, \text{ if } p_1\ne2 \text{ and } a_1\text{- even},\\
1, \text{ if } p_1\ne2 \text{ and } a_1\text{- odd}.
\end{cases}
$$ With allowance for the fact that the factorization of natural numbers is determined uniquely,
the system of equations (5) is a system of $2n$ equations and $2n$ unknowns (not with $(n^2+n)$ unknowns). The numbers $a^{(i,j)}$ are uniquely determined by a factorization function $F(p_1,a_1,i,j)$ and
are considered as parameters.
From the system of equations (2) we obtain the equation
\begin{equation}
a=-\frac{\ln\left(q-\frac1{q-1}(q-1)\right)^{-1}}{\ln\frac1{q-1}}
\end{equation}
at $2>q>1$. This function has an infinite number of (infinite) left discontinuities of the second
kind at the points $q=(l+1)/1$ ($l\in\mathrm{N}$). Hypothetically, beginning from some values of $n$, most of
exponents of $a_n$ in system (2) can be equal only to $1$.
It is proved that for a given (fixed) value $n\geqslant3$ there exists only a finite number of odd perfect
numbers.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
odd perfect number, amicable numbers, number theory.
                    
                  
                
                
                @article{VTGU_2014_6_a0,
     author = {R. Z. Ahmadullin},
     title = {On odd perfect numbers},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--18},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a0/}
}
                      
                      
                    R. Z. Ahmadullin. On odd perfect numbers. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 5-18. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a0/
